
FP7-INFRASTRUCTURES-2010-2

HP-SEE

High-Performance Computing Infrastructure for South East Europe’s
Research Communities

Deliverable 8.4

Assessment of interoperability and scalability solutions

Author(s): Gabor Roczei (editor)

Status –Version: final – k

Date: February 28, 2013

Distribution - Type: Public

Code: HPSEE-WP8-HU-23-D8.4-j-2013-02-25

Abstract: This deliverable is a detailed report on how the line of actions and recommendation proposed in D8.1
improved the scalability of HP-SEE applications. The deliverable also presents the level of the internal
harmonization (inside the SEE infrastructure) and of the external harmonization (related to pan-European level),
that was reached following a number of interoperability actions that were implemented within this work-
package.

 Copyright by the HP-SEE Consortium
The HP-SEE Consortium consists of:

GRNET Coordinating Contractor Greece
ICCT-BAS Contractor Bulgaria
IFIN-HH Contractor Romania
TUBITAK ULAKBIM Contractor Turkey
NIIFI Contractor Hungary
IPB Contractor Serbia
UPT Contractor Albania
UOBL ETF Contractor Bosnia-Herzegovina
UKIM Contractor FYR of Macedonia
UOM Contractor Montenegro
RENAM Contractor Moldova (Republic of)
IIAP NAS RA Contractor Armenia
GRENA Contractor Georgia
AZRENA Contractor Azerbaijan

D8.4 - Assessment of interoperability and scalability solutions Page 2 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

This document contains material, which is the copyright of certain HP-SEE beneficiaries and the EC,
may not be reproduced or copied without permission.

The commercial use of any information contained in this document may require a license from the
proprietor of that information.

The beneficiaries do not warrant that the information contained in the report is capable of use, or
that use of the information is free from risk, and accept no liability for loss or damage suffered by
any person using this information.

D8.4 - Assessment of interoperability and scalability solutions Page 3 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Document Revision History

Date Issue Author/Editor/Contributor Summary of main changes

May 15th, 2012 a Gabor Roczei Initial version of ToC

May 16th, 2012 b Gabor Roczei, Ioannis Liabotis, Barbara Toth ToC comments implemented

May 31th, 2012 c
Boro Jakimovski, Dusan Vudragovic, Emil
Slusanschi, Silviu Panica, Ionut Vasile,
Dobromir Georgiev, Ljupco Pejov, Anastas
Mishev, Dragan Jakimovski, Neki Frasheri,
Gabor Roczei, Ioannis Liabotis, George
Kastellakis, Manthos G. Papadopoulos,
Heribert Reis, Neki Frasheri, Betim Cico

First contributions from partners
(application scalability analysis,
HPC software stack information)

June 12th,
2012

d
Yiota Poirazi, Anastasis Oulas, Dragan
Jakimovski, Neki Frasheri, Betim Cico,
Ramaz Kvatadze, Jumber Kereselidze,
George Mikuchadze, Todor Gurov, Emanouil
Atanassov, Aneta Karaivanova, Dobromir
Georgiev

Second contributions from
partners (application scalability
analysis)

January 24th,
2013

e
Branko J. Drakulić, Ivan Juranic, Ramaz
Kvatadze, George Mikuchadze, Ljupčo Pejov,
Anastas Mishev, Jane Jovanovski, Boro
Jakimovski, Dragan Jakimovski, Neki
Frasheri, Dusan Vudragovic, Antun Balaz,
Mihajlo Savic, Luka Filipovic, Nicolai Iliuha,
Boris Rybakin, Peter P. Bogatencov, Secrieru
Renam, Gergely Windisch, Akos Balasko,
Miklos Kozlovszky, Gabor Roczei

Third contributions from partners
(application scalability analysis)

February 15th,
2013

f
Ioannis Liabotis, Gergely Windisch, Akos
Balasko, Miklos Kozlovszky, Gabor Roczei

Helpdesk contribution; gUSE
portal contribution; software
stacks added; HP-SEE modules
added; software monitoring added

February 20th,
2013

g
Gabor Roczei, Vladimir Slavnic, Dragos
Zabet, Ionut Vasile, Todor Gurov, Silviu
Panica, Anastas Mishev, Emil Slusanschi,
Alexandru Herisanu, Anastas Misev

Contributions from HPC centres

February 22th,
2013

h Gabor Roczei Prefinal version

February 24th,
2013

i

Gabor Roczei, Ioannis Liabotis

Scalability methodology table
added; conclusion and
recommendation has been
extended

February 25th,
2013

j Gabor Roczei, Milosavljevic Lidija Quality control check

February 28th k Ioannis Liabotis, Ognjen Prnjat Final editing

D8.4 - Assessment of interoperability and scalability solutions Page 4 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Preface

The core European eInfrastructure for large-scale eScience research consists of the backbone GÉANT
network; distributed storage & computing infrastructure - European Grid Initiative (EGI); and the
PRACE initiative providing tier-0 High Performance Computing (HPC) infrastructure. South-East
European eInfrastructure initiatives aim for equal participation of the less-resourced countries of the
region in the European trends. SEEREN initiative established a regional network and the SEE-GRID
initiative the regional Grid, with majority of countries now equal partners in GÉANT and EGI. BSI
project established the GÉANT link to the Caucasus, active until mid-2010. However, HPC
involvement of the region is limited. Only few HPC installations are available, not open to cross-
border research; while the less-resourced countries have no mechanism established for interfacing
to the pan-European HPC initiatives.

HP-SEE focuses on a number of strategic actions. First, it will link the existing and upcoming HPC
facilities in the region into a common infrastructure, and provide operational solutions for it. As a
complementary action, the project will establish and maintain the GÉANT link for Caucasus.
Moreover, it will open this HPC infrastructure to a wide range of new user communities, including
those of less-resourced countries, fostering collaboration and providing advanced capabilities to
researchers, with an emphasis on strategic groups in computational physics, chemistry and life
sciences. Finally, it will ensure establishment of national HPC initiatives, and act as a SEE bridge for
PRACE. In this context, HP-SEE will aim to attract the local political & financial support for a long-
term sustainable eInfrastructure.

HP-SEE aspires to contribute to the stabilisation and development of South-East Europe, by
overcoming fragmentation in Europe and stimulating eInfrastructure development and adoption by
new virtual research communities, thus enabling collaborative high-quality research across a various
spectrum of scientific fields.

The main objectives of the HP-SEE project are:

1. Empowering multi-disciplinary virtual research communities. HP-SEE will involve
and address specific needs of a number of new multi-disciplinary international
scientific communities (computational physics, computational chemistry, life
sciences, etc.) and thus stimulate the use and expansion of the emerging new
regional HPC infrastructure and its services.

2. Deploying integrated infrastructure for virtual research communities. HP-SEE will
provide and operate the integrated South-East European eInfrastructure and
specifically the HPC eInfrastructure for the region. In the context of the project,
this focuses on operating the HPC infrastructure and specific end-user services
for the benefit of new user communities, and establishing the continuity of the
GEANT link to Caucasus.

3. Policy development and stimulating regional inclusion in pan-European HPC
trends. The inclusion of the new Virtual Research Communities and the
inauguration of the infrastructure, together with a set of coordinated actions
aimed at setting up HPC initiatives in the region, aim to contribute to regional
development and ensure that countries in this outermost European region will
join the pan-European HPC trends.

4. Strengthening the regional and national human network. The project will
capitalize on the existing human network and underlying research infrastructure

D8.4 - Assessment of interoperability and scalability solutions Page 5 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

to strengthen scientific collaboration and boost more effective high-quality
research and cooperation among participating SEE communities.

The expected results of the project are:

1. Project management information system established
2. Promotional package available
3. National HPC initiatives in core countries established
4. HPC related Memorandum of Understanding on the regional level
5. Set of inter-disciplinary applications running on regional infrastructure
6. Regional HPC resources available to target virtual research communities
7. Realization of Network Connections and deployment of relevant management

and monitoring tools
8. Application software environment deployed
9. Establishment of a relevant for the region HPC technology watch

The HP-SEE project kicked-off in September 2010 and is planned to be completed by
May 2013. It is coordinated by GRNET with 13 contractors participating in the project:
major lead institutes in the region for computing aspects of eInfrastructures in
Bulgaria, Romania, Turkey, Hungary, Serbia, Albania, Bosnia-Herzegovina, FYROM,
Montenegro, Moldova (Republic of), Armenia, Georgia, Azerbaijan. The total budget is
3.885.196 €. The project is funded by the European Commission's Seventh Framework
Programme for Capacities-Research Infrastructures.

The project plans to issue the following deliverables:

Del.
no.

Deliverable name Nature Security
Planned
Delivery

D1.1 Project management information system and
“grant agreement” relationships R CO M01

D2.1 Procurement guidelines analysis R PU M04

D2.2 National HPC task-force modelling and
organizational guidelines R PU M10

D2.3 HPC centre setup cookbook R PU M14

D2.4 Regional collaboration modalities and European
integration feasibility R PU M16

D2.5 Final report on international collaboration R PU M36

D3.1 Internal and external web site, docs repository
and mailing lists R PU M02

D3.2 Promotional package R PU M03

D3.3 HPC training and dissemination plan R PU M03

D3.4 Regional & national training and dissemination
events report R PU M12

D3.5 Promotional package R PU M13

D3.6 Regional & national training and dissemination R PU M36

D8.4 - Assessment of interoperability and scalability solutions Page 6 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

events report

D3.7 Final plan for the use and dissemination of
foreground R PU M36

D4.1 Target applications analysis R PU M05

D4.2 Report on application deployment and support R PU M12

D4.3 HPC programming techniques guidelines R PU M20

D4.4 User community engagement and applications
assessment R PU M31

D4.5 Pilot Call Report R PU M35

D5.1 Infrastructure, Network and Management
Deployment Plan R PU M05

D5.2 Infrastructure overview and assessment R PU M12

D5.3 Infrastructure deployment plan R PU M14

D5.4 Infrastructure overview and assessment R PU M34

D6.1 Tender evaluation results 1 R PU M06

D6.2 Tender evaluation results 2 R PU M06

D6.3 Final Tender Results R PU M11

D7.1 Network Implementation and equipments
configuration R PU M13

D7.2 Deployment of essential network services and
management tools R PU M17

D7.3
CSIRT/NOC Cooperation Report and
Harmonization of Efforts among South Caucasus
NRENs

R PU M23

D7.4 Analysis of the connectivity requirements of the
HPC users in the beneficiary regions R PU M34

D8.1 Software scalability analysis and interoperability
issues assessment R PU M06

D8.2 Design of interoperability and scalability
solutions R PU M12

D8.3 Permanent technology watch report R PU M35

D8.4 Assessment of interoperability and scalability
solutions R PU M30

Legend: R = Report, O = Other, PU = Public, CO = Confidential (only for members of the consortium incl. EC).

D8.4 - Assessment of interoperability and scalability solutions Page 7 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Table of contents

1. Introduction .. 21

2. Analysis of applications scalability .. 22

2.1. HC-MD-QM-CS ... 24
2.1.1. Summary .. 24
2.1.2. Implemented scalability actions ... 24
2.1.3. Benchmark dataset .. 25
2.1.4. Hardware platforms .. 25
2.1.5. Execution times ... 25
2.1.6. Memory Usage ... 27
2.1.7. Profiling .. 27
2.1.8. Communication .. 28
2.1.9. I/O ... 28
2.1.10. CPU and cache ... 28
2.1.11. Analysis .. 28

2.2. GENETATOMICS ... 29
2.2.1. Summary .. 29
2.2.2. Parallelization .. 29
2.2.3. New way to measure relative scalability of algorithm 29
2.2.4. Benchmark dataset .. 30
2.2.5. Hardware platforms .. 30
2.2.6. Execution times ... 30
2.2.7. Memory Usage ... 31
2.2.8. Profiling .. 32
2.2.9. Communication .. 32
2.2.10. I/O ... 32
2.2.11. CPU and cache ... 32
2.2.12. Analysis .. 32

2.3. GIM .. 33
2.3.1. Summary .. 33
2.3.2. Implemented scalability actions ... 33
2.3.3. Benchmark dataset .. 33
2.3.4. Hardware platforms .. 34
2.3.5. Execution times ... 34
2.3.6. Memory Usage ... 36
2.3.7. Profiling .. 36
2.3.8. Communication .. 36
2.3.9. I/O ... 37
2.3.10. CPU and cache ... 37
2.3.11. Derived metrics .. 37
2.3.12. Analysis .. 37

2.4. MSBP .. 38
2.4.1. Summary .. 38
2.4.2. Implemented scalability actions ... 38
2.4.3. Benchmark dataset .. 38
2.4.4. Hardware platforms .. 38
2.4.5. Execution times ... 38
2.4.6. Memory Usage ... 39
2.4.7. Communication .. 39
2.4.8. I/O ... 39
2.4.9. CPU and cache ... 39
2.4.10. Analysis .. 39

D8.4 - Assessment of interoperability and scalability solutions Page 8 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.5. SET .. 40
2.5.1. Summary .. 40
2.5.2. Implemented scalability actions ... 40
2.5.3. Benchmark dataset .. 41
2.5.4. Hardware platforms .. 41
2.5.5. Execution times ... 41
2.5.6. Memory Usage ... 42
2.5.7. Profiling .. 42
2.5.8. Communication .. 43
2.5.9. I/O ... 43
2.5.10. CPU and cache ... 43
2.5.11. Analysis .. 43

2.6. NUQG ... 44
2.6.1. Summary .. 44
2.6.2. Implemented scalability actions ... 44
2.6.3. Benchmark dataset .. 44
2.6.4. Hardware platforms .. 44
2.6.5. Execution times ... 44
2.6.6. Memory Usage ... 46
2.6.7. Profiling .. 47
2.6.8. Communication .. 47
2.6.9. I/O ... 48
2.6.10. Analysis .. 48

2.7. SFHG .. 49
2.7.1. Summary .. 49
2.7.2. Implemented scalability actions ... 49
2.7.3. Benchmark dataset .. 50
2.7.4. Hardware platforms .. 50
2.7.5. Execution times ... 50
2.7.6. Memory Usage, CPU and cache .. 52
2.7.7. Profiling .. 52
2.7.8. Communication and I/O .. 52
2.7.9. Analysis .. 52

2.8. CFDOF .. 53
2.8.1. Summary .. 53
2.8.2. Implemented scalability actions ... 53
2.8.3. Benchmark dataset .. 53
2.8.4. Hardware platforms .. 53
2.8.5. Execution times ... 53
2.8.6. Memory Usage, CPU and cache .. 54
2.8.7. Profiling .. 54
2.8.8. Communication and I/O .. 54
2.8.9. Analysis .. 54

2.9. DNAMA ... 56
2.9.1. Summary .. 56
2.9.2. Implemented scalability actions ... 56
2.9.3. Benchmark dataset .. 56
2.9.4. Hardware platforms .. 56
2.9.5. Execution times ... 56
2.9.6. Memory Usage ... 58
2.9.7. Profiling .. 58
2.9.8. Communication .. 58
2.9.9. I/O ... 58
2.9.10. CPU and cache ... 58
2.9.11. Analysis .. 58

2.10. AMR_PAR: PORTING FROM WINDOWS TO LINUX .. 60
2.10.1. Summary .. 60

D8.4 - Assessment of interoperability and scalability solutions Page 9 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.10.2. Implemented scalability actions ... 60
2.10.2.1 The sources of some problems when porting applications’ code from Windows to
Linux platform ... 60
2.10.2.2 Problems when porting interactive applications from Windows to Linux platform
 61
2.10.2.3 The development of portable code with a graphical interface........................ 61
2.10.2.4 Packages for helping to solve the problem of porting applications 61
2.10.2.5 Specificity of porting of AMR_PAR application (64 bit, Fortran)...................... 62
2.10.2.6 Intel Parallel Studio XE 2011 with VS2010... 62

2.10.3. Hardware platforms .. 63
2.10.4. Execution times ... 63
2.10.5. Memory Usage ... 63
2.10.6. Analysis .. 64

2.11. DEEPALIGNER AND DISEASEGENEMAPPER .. 65
2.11.1. Summary .. 65
2.11.2. Application description .. 65
2.11.3. Implemented scalability actions ... 65
2.11.4. Benchmark dataset ... 65
2.11.5. Hardware platforms .. 65
2.11.6. Software platforms ... 66
2.11.7. Execution times ... 67
2.11.8. Further optimization ... 68
2.11.9. Memory Usage ... 69
2.11.10. Profiling ... 69
2.11.11. Communication .. 70
2.11.12. I/O .. 70
2.11.13. Analysis ... 70

2.12. FMD-PA ... 71
2.12.1. Summary .. 71
2.12.2. Implemented scalability actions ... 71
2.12.3. Benchmark dataset ... 72
2.12.4. Hardware platforms .. 72
2.12.5. Execution times ... 72
2.12.6. Memory Usage ... 72
2.12.7. Analysis .. 72

2.13. COMPCHEM .. 73
2.13.1. Summary .. 73
2.13.2. Implemented scalability actions ... 73
2.13.3. Benchmark dataset ... 74
2.13.4. Hardware platforms .. 74
2.13.5. Execution times ... 74
2.13.6. Memory Usage ... 76
2.13.7. Profiling ... 76
2.13.8. Communication .. 76
2.13.9. I/O ... 76

3. Software harmonization .. 77

3.1. HARMONIZATION STATUS .. 77
3.2. HP-SEE SOFTWARE STACK.. 79

3.2.1. Minimal software stack (mandatory for all HPC centre) 79
3.2.2. Recommended software stack .. 81

4. Interoperability ... 83

4.1. RESOURCE MANAGEMENT SYSTEM AND USER AUTHENTICATION 83
4.1.1. Resource management system .. 83

4.1.1.1 Registration of new users ... 83
4.1.2. LDAP ... 85

4.2. HP-SEE COMMON ENVIRONMENT .. 86

D8.4 - Assessment of interoperability and scalability solutions Page 10 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

4.3. SOFTWARE MONITORING WITH NAGIOS .. 87
4.4. USAGE OF GUSE PORTAL .. 88

4.4.1. Availability .. 88
4.4.1.1 DiseaseGeneMapper .. 88
4.4.1.2 Deep Aligner .. 88

4.4.2. Requirements .. 88
4.4.3. Installation (for portal administrators) .. 88
4.4.4. Using the portlets ... 90
4.4.5. Creating a new DiseaseGeneMapper query .. 91
4.4.6. DiseaseGeneMapper job lifecycle .. 91
4.4.7. Submitting jobs ... 91
4.4.8. Downloading results ... 92
4.4.9. Parameters .. 93
4.4.10. DeepAligner ... 93

4.4.10.1 Parameters .. 94
4.4.11. Appendix ... 94

4.5. HP-SEE HELPDESK SYSTEM ... 96

5. Conclusions ... 97

D8.4 - Assessment of interoperability and scalability solutions Page 11 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

References
[1] Project HP-SEE – 261499 – Annex I – Description of Work

[2] HP-SEE Deliverable 4.1 - Target Applications Analysis

[3] HP-SEE Deliverable 4.2 - Report on application deployment and support

[4] HP-SEE Deliverable 4.3 - HPC programming techniques guidelines

[5] HP-SEE Deliverable 5.3 – Infrastructure overview and assessment

[6] HP-SEE Deliverable 8.1 – Software Scalability Analysis and Interoperability
Issues Assessment

[7] HP-SEE Deliverable 8.2 – Design of interoperability and scalability solutions

[8] 1st HP-SEE Technical Review Report, 2011

[9] HP-SEE Wiki, http://wiki.hp-see.eu/index.php/HP-SEE_Wiki

[10] http://www.prace-ri.eu/IMG/pdf/D6-2-2.pdf

[11] http://hpseewiki.ipb.ac.rs/index.php/Module_framework

[12] http://nagios.sourceforge.net/docs/nrpe/NRPE.pdf

[13] http://www.deisa.eu/usersupport/user-documentation/deisa-common-
production-environment/components-of-the-software-stacks

[14] GPU supported applications: http://www.nvidia.com/object/gpu-
applications.html

[15] Grid middleware access: http://survey.ipb.ac.rs/index.php?sid=21188

[16] Titan supercomputer: http://top500.org/system/177975

[17] HP-SEE common environment: https://github.com/HP-SEE/hce

[18] Bioportal: http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5

D8.4 - Assessment of interoperability and scalability solutions Page 12 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

List of Figures

Figure 1 - HC-MD-QM-CS, demonstrate the scalability ___ 26
Figure 2 - HC-MD-QM-CS, demonstrate the scalability, (log-log plot)__ 26
Figure 3 – Required computational time 1, HC-MD-QM-CS __ 27
Figure 4 – Required computational time 2, HC-MD-QM-CS __ 27
Figure 5 - Calculate speed up of algorithm ___ 31
Figure 6 - 3D cuboid underground geosection ___ 33
Figure 7 - Tests with OpenMP in HPCG ___ 34
Figure 8 - Tests with OpenMP in Pecs SC ___ 35
Figure 9 - Tests with MPI in HPCG __ 35
Figure 10 - Tests with MPI in Pecs SC ___ 35
Figure 11 – CPU time on Blue Gene/P __ 42
Figure 12 - Execution time and speedup as a function of the number of CPU cores at PARADOX and HPCG
clusters __ 45
Figure 13 - Ratio of the CPU execution time of the original MC and the improved quasi-MC code as a function
of the precision of the amplitude. ___ 45
Figure 14 - Speedup in the execution time of the NUQG GP module as a function of the number of CPU cores.
 __ 46
Figure 15 - Effective speedup of the NUQG GP application. __ 46
Figure 16 - NUQG GP total memory allocation. __ 46
Figure 17 - CPU / Wall time ratio as function of number of CPU cores (BA-01-ETFBL) ______________________ 51
Figure 18 - CPU / Wall time as function of number of CPU cores (Pecs SC) ____________________________________ 52
Figure 19 - Simulation and total times and speedup as function of number of CPU cores _____________________ 54
Figure 20 - Cross section of burner after T=0,1 s and T=1,3 s (illustration) ____________________________________ 55
Figure 21 – DNAMA MPI result ___ 57
Figure 22 - DNAMA Pthreads result __ 58
Figure 23 – AMR_PAR, HPCG cluster, CPU and wall times ___ 63
Figure 24 - Execution times measured by mpiBlast in seconds___ 67
Figure 25 - mpiBlast speedup using multiple CPU cores compared to running it on just one CPU core _______ 68
Figure 26 - Efficiency of using multiple CPU cores ___ 68
Figure 27 - Execution times in seconds using different number of Database Fragments ______________________ 69
Figure 28 - HPCG cluster, FMD-PA __ 71
Figure 29 - Blue Gene cluster, FMD-PA ___ 71
Figure 30 - Scalability of the NAMD 2.9, CPU’s / Nodes __ 75
Figure 31 - Scalability of NAMD 2.9, CPU’s ___ 75
Figure 32 - Registration __ 83
Figure 33 – HPC Centres __ 84
Figure 34 – Statistics for the used CPU time __ 84
Figure 35 – LDAP topology ___ 85
Figure 36 – HP-SEE module system __ 86
Figure 37 - Nagios Remote Plugin Executor __ 87
Figure 38 - Software monitoring with Nagios __ 87
Figure 39 - Concept of ASM ___ 90
Figure 40 - Upload certificate to use the portlets ___ 90
Figure 41 - DiseaseGeneMapper main window ___ 91
Figure 42 - DeepAligner main window ___ 91
Figure 43 - Executing DeepAligner query __ 92
Figure 44 - Downloading results from the applications __ 92
Figure 45 - Setting the parameters for Disease Gene Mapper __ 93
Figure 46 - Setting the parameters for DeepAligner ___ 94

D8.4 - Assessment of interoperability and scalability solutions Page 13 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

List of Tables
Table 1 – Methodologies used by the applications ___ 23
Table 2 - Calculate speed up of algorithm __ 31
Table 3 - Calculate speed up of algorithm, HT __ 31
Table 4 - The volume of calculations for each iteration __ 34
Table 5 – Memory usage of GIM __ 36
Table 6 – Execution times of SET ___ 41
Table 7 Comparison of the execution time and parallel efficiency of SET ______________________________________ 42
Table 8 - Memory usage of NUQG GP codes. __ 47
Table 9 - Scalability test results for BA-01-ETFBL with up to 16 CPU cores ___________________________________ 50
Table 10 - Scalability test results for Pecs SC with up to 48 CPU cores ___ 51
Table 11 - Scalability test results for PARADOX with up to 32 CPU cores ______________________________________ 53
Table 12 – DNAMA MPI result __ 57
Table 13 – DNAMA Pthreads result ___ 57
Table 14 – Memory usage of AMR_PAR __ 64
Table 15 - Memory usage while executing the application. The results come from the maxvmem parameter of
qacct __ 69
Table 16 - Execution time ratio of the jobs in the whole DGM and DA portlets ________________________________ 69
Table 17 - Execution time ratio inside Job2 __ 70
Table 18 - I/O as measured using the IO parameter of qacct __ 70
Table 19 - Scalability of NAMD 2.9 on PARADOX/IPB __ 74
Table 20 - Scalability of NAMD 2.9 on HPCG/BG ___ 75
Table 21 – Software stack status, input: D8.2 __ 78
Table 22 – Software stack status, 22th February 2013 ___ 79
Table 23 – Minimal and recommended software stack status, 22th February 2013 ___________________________ 82

D8.4 - Assessment of interoperability and scalability solutions Page 14 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

List of Equations
Equation 1 - Measure relative scalability ___ 30
Equation 2 - Measuring scalability of algorithm ___ 30
Equation 3 – Harmonization metric __ 78

D8.4 - Assessment of interoperability and scalability solutions Page 15 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Glossary

Acronym Description

ACML AMD Core Math Library

AMD Advanced Micro Devices

AMR_PAR Parallel algorithm and program for the solving of continuum
mechanics equations using Adaptive Mesh Refinement

API Application Programming Interface

ARC Advanced Resource Connector

AREX ARC Remote EXecution service

ASM Application Specific Module

ATLAS Automatically Tuned Linear Algebra Software

BES Basic Execution Services

BLACS Basic Linear Algebra Communication Subprograms

BLAS Basic Linear Algebra Subprograms

BLAST Basic Local Alignment Search Tool

CAD Computer Aided Design

ccNUMA Cache coherent Non-Uniform Memory Access

CFD Computational Fluid Dynamics

CFDOF CFD Analysis of Combustion

CHARMM Chemistry at HARvard MacromolecularMechanics

COM Component Object Model

CompChem Quantum Mechanical, Molecular Mechanics, and Molecular
Dynamics computation in chemistry

CPMD Car-Parrinello Molecular Dynamics

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DCOM Distributed Component Object Model

DeepAligner Deep sequencing for short fragment alignment

DFT Discrete Fourier Transform

DiseaseGeneMapper In-silico Disease Gene Mapper

DNA Deoxyribonucleic acid

DNAMA DNA Multicore Analysis

DRD Data-Race Detector

EMI European Middleware Initiative

ESSL Engineering And Scientific Subroutine Library

D8.4 - Assessment of interoperability and scalability solutions Page 16 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

FFTW Fastest Fourier Transform in the West

FMD-PA Design of fullerene and metal-diothiolene-based materials
for photonic applications

GAMESS General Atomic and Molecular Electronic Structure System

GCC GNU Compiler Collection

GENETATOMICS Genetic algorithms in atomic collisions

GIM Geophysical Inversion Modeling

GPGPU General-Purpose computing on Graphics Processing Units

GPU Graphical Processing Unit

GROMACS GROningen MAchine for Chemical Simulations

GUI Graphical user interface

gUSE grid User Support Enviroment

HC-MD-QM-CS Hybrid Classical/Quantum Molecular Dynamics – Quantum
Mechanical Computer Simulation of Condensed Phases

HCE HP-SEE common environment

HPC High Performance Computing

Intel MKL Intel Math Kernel Library

JSDL Job Submission Description Language

LAPACK Linear Algebra Package

LDAP Lightweight Directory Access Protocol

LDIF LDAP Data Interchange Format

MD Molecular Dynamics

MESI Modified, Exclusive, Shared, Invalid

MFC Microsoft Foundation Classes

MIDL Microsoft Interface Definition Language

MKL Math Kernel Library

MPI Message Passing Interface

MSBP Modeling of some biochemical processes with the purpose
of realization of their thin and purposeful synthesis

NAMD NAnoscale Molecular Dynamics

NCBI National Center for Biotechnology Information

NRPE Nagios Remote Plugin Executor

NUMA Non-Uniform Memory Access

NUQG Numerical study of ultra-cold quantum gases

OLE Object Linking and Embedding

OpenCL Open Computing Language

OpenCV Open Source Computer Vision

D8.4 - Assessment of interoperability and scalability solutions Page 17 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

OpenFOAM Open Field Operation And Manipulation

OpenMP Open Multiprocessing

OS Operating System

PBS Portable Batch System

PME Particle Mesh Ewald

pNFS Parallel Network File System

POSIX Portable Operating System Interface for uniX

QDR Quad Data Rate

RAM Random Access Memory

RAxML Randomized Axelerated Maximum Likelihood

RFC Request for Comments

RT Request Tracker

SDK Software Development Toolkit

SEE-GRID South Eastern European GRid-enabled eInfrastructure
Development

SEEREN South Eastern European Research & Education Network

SET Simulation of electron transport

SFHG Self Avoiding Hamiltonian Walk on Gaskets

SGE Sun Grid Engine

SIMT Single Instruction Multiple Threads

SMP Symmetric multiprocessing

SPMD Single Program Multiple Data

SPRNG Scalable Parallel Random Number Generators

TORQUE Terascale Open-Source and QUEue Manager

UNICORE Uniform Interface to Computing Resources

UNIX Dynamic-link library

VMD Visual Molecular Dynamics

WS-PGRADE WebService-Parallel Grid Run-time and Application
Development Environment

D8.4 - Assessment of interoperability and scalability solutions Page 18 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Executive summary

What is the focus of this Deliverable?

This deliverable presents the key outcomes of WP8 activities WP8.1 and WP8.2 -
namely “Software environment scalability analysis and interoperability issues” and
“Software environment adjustment”. The main aim is to describe in detail the
achievements of the WP8 in terms of improving the scalability of the HP-SEE selected
applications while also providing transparent job execution and usage experience across
different HPC centers of the region. The deliverable makes use of the recommendations
and guidelines presented in D8.2 [7] “Design of interoperability and scalability
solutions” to demonstrate their effectiveness in the duration of the HP-SEE project.

What is next in the process to deliver the HP-SEE results?

The conclusions and recommendations from this deliverable will be used in the
following HP-SEE activities:

 WP3.3: Plan, organize and participate in technical workshops and training events

 WP3.4: Develop and maintain training infrastructure and training community

 WP4.2: Port and optimize regional applications of interest

 WP4.3: Application deployment and support

 WP5.2: Implementation of the regional HPC infrastructure

 WP5.3: Resource Management

 WP5.4: Application Support

 WP5.5: Infrastructure Monitoring

 WP8.2: Software environment adjustment

 WP8.3: Permanent technology watch

Additionally, this deliverable will be used as an important input in preparation and
formulation of the following future deliverables:

 D4.4: User community engagement and applications assessment

 D4.5: Pilot Call Report

 D5.4: Infrastructure overview and assessment

 D8.3: Permanent technology watch report

What are the deliverable contents?

The deliverable covers all scalability and interoperability actions which have been
defined in the D8.2. Main deliverable contents are:

 Analysis of applications’ scalability

 Harmonization status between the HPC centres

 HP-SEE software stacks

 HP-SEE common environment

D8.4 - Assessment of interoperability and scalability solutions Page 19 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

 Resource management system and user authentication

 Software monitoring

 Bioinformatic portal

Conclusions and recommendations

Based on the work related to scalability and interoperability, performed within WP8, we
can draw the following conclusions and recommendations for achieving better utilization
of the infrastructure based on the types and variety of applications deployed in the HP-
SEE infrastructure:

 MPI is the most widely used parallelization method used among the HP-SEE
applications. This trend is seen also word-wide as most HPC codes have MPI
implementations.

 The increase in the number of cores per node in the recent HPC systems has
lead to an increase of applications that are using the OpenMP parallelization
paradigm as well as the hybrid model (MPI + OpenMP) to achieve higher
scalability.

 Enabling hyper-threading (although it is documented not to benefit all
applications) in some cases has been proven to provide some better
performance as shown by at least one HP-SEE application.

 The usage of different compilers in some platforms and some applications can
provide better performance. The same effect is less commonly observed by the
usage of different MPI implementations.

 Applications’ performance and scalability can vary based on the type of HPC
systems that are being used for its deployment.

 HP-SEE common environment has been installed on the HPC centres which helps
to improve the transparent access of the users.

 A second set of recommended software environment has been defined (mainly
composed of user level libraries or complete application codes), to facilitate a
more uniform interoperable infrastructure.

 By defining software stacks that are both designed for the needs of the HP-SEE
applications, as well as adhering to the international and mainly European
stacks, the HP-SEE infrastructure is highly harmonised at the regional as well as
the European level.

 The modules framework is used by HP-SEE as well as PRACE for providing a
mechanism that hides the underlying software configuration complexity.

 The HP-SEE Module’s git repository [17] is publicly available via the project.

 Several operational and user level tools, such as the helpdesk, the access portal
and the grid middleware, among others, provide interoperability solutions to the
infrastructure.

 The Bioportal [18] gives a good opportunity for the users to use the HPC sites in
uniform and user friendly way.

D8.4 - Assessment of interoperability and scalability solutions Page 20 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

 The scalability of the participating to the study applications varies depending on
the application. Specific applications have demonstrated scalability of 4096 or
1024 cores.

D8.4 - Assessment of interoperability and scalability solutions Page 21 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

1. Introduction

Two major topics are discussed in this document: scalability and interoperability
assessment. A set of actions for achieving higher application scalability has been
defined in D8.2; this set of actions has been implemented regarding several
applications in the duration of the project. This deliverable presents the assessment of
the results of the above process.

The main actions used by the HP-SEE applications to improve their scalability and
therefore their performance are:

 Usage of different programming models

 Efficient usage of parallel libraries

 Efficient usage of compilers or compiler flags

 Usage of different compute technologies i.e. CPU vs GPU

Tools such as profilers and debuggers have assisted in the implementation of the above
actions.

The second part of the document is about software harmonisation. WP8 has defined a
metric within deliverable D8.2 which describes the harmonisation status of the HPC
centres. The metric values have been calculated again in this document. The result has
been improved since missing software components have been installed in the centres.

WP8 has defined two software stacks, which helped to improve the harmonisation level
of the sites:

 Minimal software stack

 Recommended software stack

The minimal software stack should be installed on all sites (with some exceptions in
case of non-suitability) while the recommended software stack contains optional
software components that improve the interoperability of the infrastructure if used. HP-
SEE Common Environment (HCE) has been created for these software stacks,
facilitating the transparent access to the HP-SEE infrastructure based also in the
European standards set by PRACE. This common environment is using the Module
framework. The HCE modules are used in the software monitoring scripts too. The
monitoring architecture is based on Nagios system, which is free available open source
software.

Finally a Bioinformatics portal has been deployed in the HP-SEE infrastructure. The
portal is mainly used by the Life Science users providing transparent access to the
infrastructure being available to regional scientists. The usage of this portal is described
at the end of this document.

D8.4 - Assessment of interoperability and scalability solutions Page 22 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2. Analysis of applications scalability

Table 1 summarizes the scalability methodologies, which are used by the applications
that took part in the WP8 scalability studies. 14 applications in total have been
analysed by the WP.

Apppplication

Parallelization
technologies

Compilers Technologies Hardware
platforms Comments

O
p

en
M

P

P
O

S
IX

th

re
ad

s

M
P

I

G
P

U

HC-MD-QM-CS * * GCC Intel XEON

HPCG
cluster,

FINKI SC,
local

cluster

Different
parallelizati

on
technoligies

GENETATOMICS * GCC Intel XEON HPGCG
cluster

Different
type of MPI
has been

used; hyper
threading
should be
used when
available

GIM * * GCC
Intel XEON,

ccNUMA
architecture

HPCG
ckuster,
Pecs SC

Different
parallelizati

on
technoligies

MSBP *

GCC
(4.4.x,
4.7.X),
Open64

AMD Opteron
NCIT

cluster,
Szeged SC

Different
compilers
have been

tested

SET * *

GCC, Intel
compiler,
IBM XL

compiler

PowerPC
based, Intel
Xeon, M2090

GPU card, GTX
295-based

GPU

HPCG
Cluster,

BlueGene
BG

Different
version of
MPIs, Intel
compiler
provides
the best

result, 30%
improveme

nt when
hyperthredi
ng is turned
on, M2090
card give

better
result then

GTX295

NUQG * * GCC
Intel XEON,

ccNUMA
architecture

HPCG
cluster,
Pecs SC,
PARADOX

PARADOX,
HPCG

cluster (MPI
parallelizati
on used),
Pecs SC
(OpenMP

D8.4 - Assessment of interoperability and scalability solutions Page 23 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

parallelizati
on)

SFHG * *

Open64,
PGI, Intel,
GCC (4.3,
4.1, 4.5,

4.6)

Intel XEON,
AMD Opteron,

ccNUMA
architecture

Pecs SC,
Szeged

SC,
PARADOX,

BA-01-
ETFBL

Different
compiler

flags have
been tested

CFDOF * GCC Intel XEON,
AMD Opteron

PARADOX,
BA-01-
ETFBL

Intel and
AMD

platform
has been
tested too

DNAMA * * *
Intel

compiler,
GCC

Intel XEON,
ccNUMA

architecture

HPCG
cluster,
Pecs,

Debrecen
SC

Intel
compiler

gave better
result than

GCC for
larger

number of
cores

AMR_PAR *

Visual
Studio,
Intel

compiler

Intel XEON,
ccNUMA

IMI ASM
RENAM
cluster,
Pecs SC

Porting
from

Windows to
Linux

experiences

DeepAligner

*

Intel
compiler,

GCC,
Open64

AMD Opteron,
ccNUMA

architecture,
Intel XEON,
Power PC

based

BlueGene/
P, Szeged

SC,
Budapest

SC,
Debrecen

SC,
Debrecen

SC

Serveral
MPI

implementa
tions (SGI-

MPT,
OpenMPI)

DiseaseGeneMap
per

FMD-PA * *
GCC, IBM

XL
compiler

PowerPC CPU,
Intel Xeon,
M2090 GPU

card, GTX 295-
based GPU

HPCG
Cluster,

BlueGene
BG

Scales on
both

architecture
s

CompChem * GCC Intel XEON PARADOX,
HPCG

NAMD
testing with

serveral
configuratio

ns

Table 1 – Methodologies used by the applications

The table depicts that several of those actions have been implemented by the
applications while no common action is suitable for all applications. A more detailed
description of the implemented actions and detailed results is being given in the
following section.

D8.4 - Assessment of interoperability and scalability solutions Page 24 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.1. HC-MD-QM-CS

2.1.1. Summary

Code author(s): Ljupčo Pejov, Anastas Mishev

Application areas: Computational Chemistry

Language: FORTRAN, C/C++ Estimated lines of code: 10000

URL: http://wiki.hp-see.eu/index.php/HC-MD-QM-CS

2.1.2. Implemented scalability actions

 The computational methodology that we develop and use is a hybrid one,
consisting of several steps, each of which demands computational resources to a
various extent. It is therefore expected that each step would scale rather
differently with the number of processors/cores. The overall hybrid
computational procedure could not be fully automated, first of all due to its
complexity and the need to check certain results manually. The best possibility
to judge on its overall scalability is, therefore, to test the scalability of each of
the component phases. Our focus in this application was, therefore, to achieve
the optimal output from the available hardware architectures by optimizing the
overall complex hybrid computational approach. To achieve an overall good
scalability is possible only if one avoids the main bottlenecks in the overall
procedure, which appear to be the statistical physics simulations as well as the
subsequent supermolecular quantum mechanical calculations of the electronic
structure.

 Both MPI and OpenMP paradigms were implemented to achieve the
parallelization (depending mostly on the codes for MC/MD simulations in the
overall algorithm), testing several particular implementations thereof. The
scalability results are, however, affected to a minor degree by a particular choice
of MPI paradigm/version. Of course, this finding implies easy porting to various
different cluster architectures.

 Benchmark calculations were carried out with different codes enabling statistical
physics simulations of the condensed phases that we have studied. Careful
comparisons have been carried out between different codes and different
segment calculations thereof. For statistical physics simulations, we have used
CPMD, NAMD, NWCHEM, and other codes, while for supermolecular quantum
chemical electronic structure calculations we have mostly used Gaussian,
Gamess and ORCA. For subsequent nuclear quantum mechanical vibrational
calculations, as well as for analysis of the results from the statistical physics
computational phase, we have used our own (home-made) codes, mostly written
in FORTRAN.

 Though testing of compilation with various compilers was also done, due to
certain specificities in the codes used for statistical physics simulations, we could
not perform direct comparisons between scalability and performance thereof for
each particular compiler. We are also currently testing the performances on GPU
systems and implementing the overall methodology on these new computer
architectures. In certain case, however, wherever that was possible, we
performed tests to choose the best possible compiler and linker options, in
particular the locally optimized versions of specific libraries (such as variants of
BLAS, LAPACK, FFT etc.). On one of our local clusters, based on Intel XEON

D8.4 - Assessment of interoperability and scalability solutions Page 25 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

processors, we are currently also testing the performances of the parallel codes
with and without hyper threading.

2.1.3. Benchmark dataset

One of the bottlenecks in the overall computational methodology that we are
developing is its first phase, which involves classical or quantum molecular dynamics or
Monte-Carlo simulation of the system in question. In this report, we will focus on the
scalability of some quantum molecular dynamics approaches. We will discuss first the
scalability of the Car-Parrinello molecular dynamics (CPMD). Each CPMD simulation
consists of two phases: wave function optimization and molecular dynamics simulation.
As the optimization runs involve an iterative procedure that needs to converge, the
number of iterations required to achieve final convergence being strongly dependent on
the particular architecture, compilers and compilation parameters etc., this phase is
strongly platform – dependent and not so suitable for benchmarking. Though in the
future we aim to make careful comparisons of the optimization results as well, the main
accent in the present report will be put on the molecular dynamics phase.

Computations involved in the phase of MD trajectory analyses, in the sense of checking
the mutual statistic dependence of the snapshots are generally not much time- and
resource-consuming, and therefore not much would be gained by their parallelization.
Of course, other trajectory analyses, such as, e.g. analyses of the hydrogen bonding
networks within a molecular liquid could benefit from parallelization.

The next “bottleneck”-phase of the methodology involves quantum mechanical
computations either of the points on a grid of points to obtain the vibrational potential
energy curve or surface, or single-point computations of other type (such as, e.g. time-
dependent HF or DFT calculations of electronic spectra). We have also paid particular
attention to this phase in the course of scalability studies.

Further computation of e.g. the vibrational frequencies (i.e. the energies of vibrational
transitions) involves either standard diagonalization procedures or fourier-transform –
based techniques. In general, in the case of one-dimensional problems, diagonalization
and FFT computations are quick, and do not benefit much from parallelization.
However, in the case of multi-dimensional vibrational problems, other techniques could
be implemented, for which the scalability is significant.

2.1.4. Hardware platforms

HPCG cluster and FINKI SC

The following distinct hardware platforms were used:

 the HPCG cluster with Intel Xeon X5560 CPU @2.8 GHz,

 the FINKI SC with Intel Xeon L5640 CPU @2.26GHz

 our local cluster at the Institute of Chemistry (with Intel XEON 12-core
processors and fiber-channel interconnection)

2.1.5. Execution times

To demonstrate the scalability of the approach, in Figure 1 variation of the wall-clock
computational time required to carry out an MD simulation of a modest-size water
cluster (consisting of 32 water molecules) is plotted against the number of computing

D8.4 - Assessment of interoperability and scalability solutions Page 26 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

processes (processors/cores). Figure 2 shows the same data, where both axes are
logarithmic (log-log plot). The parallelization has been achieved by the MPI paradigm.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35

t/
 s

n

Figure 1 - HC-MD-QM-CS, demonstrate the scalability

100

1000

10000

1 10 100

t/
 s

n

Figure 2 - HC-MD-QM-CS, demonstrate the scalability, (log-log plot)

The effectiveness of the quantum mechanical electronic structure calculation phase
heavily depends on the parallelization. To illustrate this point, as a typical example, we
consider single-point energy calculations by Gaussian, required to be performed in
order to obtain the vibrational potential energy curve or surface. Figure 3 and Figure 4
show the computational time required to carry out single-point Gaussian calculations at
HF level of theory, for a system containing 10 non-hydrogen atoms, using a modest-
size basis set, plotted vs. the number of cores, in linear and logarithmic scales.

D8.4 - Assessment of interoperability and scalability solutions Page 27 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35

n

t
/ s

Figure 3 – Required computational time 1, HC-MD-QM-CS

100

1000

1 10 100

n

t
/ s

Figure 4 – Required computational time 2, HC-MD-QM-CS

2.1.6. Memory Usage

The maximum memory usage of a single computational thread is heavily dependent on
the complexity and size of the studied system. It could vary from a relatively small
value, of the order of several hundreds of MBs, up to several GBs.

2.1.7. Profiling

The usefulness of profiling analysis is that it can shed some light on the
computationally most demanding sub-phases of the overall computational algorithm. In
our study, we have found out that, during e.g. a typical CPMD simulation, most of the
computational time is spent in Fourier transformation-related computations, as well as
in many body perturbation theory calculations in the phase of electronic structure
computations.

D8.4 - Assessment of interoperability and scalability solutions Page 28 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.1.8. Communication

The overall communication time was shown to be somewhat less than 10% of the
overall execution time.

2.1.9. I/O

Though the user-defined inputs for the computations in all phases are rather small, as
they contain the basic parameters for particular computation, the statistical physics as
well as quantum mechanical electronic structure codes contain their internal databases
concerning the atomic parameters, basis set data etc. The size of the output is heavily
dependent on the frequency with which the data from MC/MD trajectories are saved
during the computations. Numerous scratch files are also heavily generated, which
enable restart of the computations (if required), and also they allow intermediary
checks of the computations.

2.1.10. CPU and cache

Most of our computations, when using the CPU-based version fit in the cache for the
Intel-based version. For other computational architectures, we still haven’t carried out
such testing (e.g. PowerPC processors of the Blue Gene/P and GPUs). The overall
significance of these operations is, however, expected to be small (of the order of
several percents.

2.1.11. Analysis

The summary of the results from our testing is the following:

 There are two bottlenecks in out complex hybrid MC/MD-QM methodology, which
heavily depend on parallelization: the statistical physics simulations (especially
the QM MD) and the QM electronic structure calculations. The overall scalability
of the two phases, however, seems to be rather good.

 While the computations involved in the phase of MD trajectory analyses are
generally not much time- and resource-consuming, other trajectory analyses,
such as, e.g. analyses of the hydrogen bonding networks within a molecular
liquid could benefit from parallelization.

 Further computation of e.g. the vibrational frequencies (i.e. the energies of
vibrational transitions) involves either standard diagonalization procedures or
fourier-transform – based techniques.While in the case of one-dimensional
problems, diagonalization and FFT computations are quick, and do not benefit
much from parallelization, in the case of multi-dimensional vibrational problems,
other techniques could be implemented, for which the scalability is significant.

D8.4 - Assessment of interoperability and scalability solutions Page 29 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.2. GENETATOMICS

2.2.1. Summary

Code author(s): Jane Jovanovski, Boro Jakimovski and Dragan Jakimovski

Application areas: Computational Physics

Language: Fortran Estimated lines of code: 2000

URL: http://wiki.hp-see.eu/index.php/GENETATOMICS

2.2.2. Parallelization

We use genetic algorithms and genetic programming for developing algorithm for
solving order differential equation (single or system of ODE). One of the main
characteristics of genetic algorithms and genetic programming as techniques for
implementation of evolutionary paradigms is their exceptional ability to be parallelized.
This comes from the fact that the individuals can be evaluated in parallel as their
performance rarely, if ever, affects that of other individuals. There are numerous ways
for parallelization of genetic algorithms, but here we will consider the following two
techniques:

 Island GA: The population is divided on several subpopulations - islands, each
subpopulation is a population on its own and is developed on a separate
processor. After a certain number of generations, all subpopulations are
gathered together into a single population to get mixed, after which they are
resent to the processors.

 Paralelization of the fitness function: The most used operation in the
evolutionary algorithms is an evaluation of the fitness value of each of the
chromosomes. The fitness value is evaluated during selection, after crossover,
after mutation. Therefore, this operation takes most of the processor time. There
are different techniques for paralelization of the fitness function depending on its
shape.

We used the Message Passing Interface (MPI) standard for building the parallel
evolutionary algorithm. We tested efficient of parallelism with different type of MPI but
we found that version of MPI is not related with scalability results. For different version
of MPI we got similar results. The current population consists of chromosomes which
contain as many stacks as there are equations in the system that is being solved, and
each of the stacks that denotes a postfix representation of the function is represented
by a stack with a variable size. For example if we solve single ODE we have a
chromosome with one stack, but if we solve system of three ODEs we have
chromosome with 3 stacks. As a result of the dynamic size of the arrays and due to the
fact that MPI cannot deal with arrays with variable size, it is impossible to divide the
population on smaller islands to be sent to the corresponding processors. This reason
led us to the implementation of the second technique for parallelization of the fitness
function.

2.2.3. New way to measure relative scalability of algorithm

The innovative approach was adopted for measuring the speed-up of parallel
implementation of the algorithm due to its stochastic nature. With different runs of the
code one gets different functions with different evaluation times. To smooth out this

D8.4 - Assessment of interoperability and scalability solutions Page 30 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

inherent stochasticity of the genetic algorithm we modified the expression for speed-up
relative nonparallel case to

Equation 1 - Measure relative scalability

Where equals time to develop the generation with processors, equals time
to develop generation with one processor, equals the number of equations in
the system, equals the mean value of the stack for whole population for
generation as represents the equation of the system when the algorithm
execution falls on one processor, is the mean value of the stack, for whole
population for generation, as represents the equation of the system when
the algorithm runs on processors.

2.2.4. Benchmark dataset

For measuring scalability of algorithm we chose to solve one ODE. We choose next
equation:

Equation 2 - Measuring scalability of algorithm

We choose step of 0,002, so we must develop fitness function in 1001 points. Our
algorithm is based on two genetic algorithms, the parameter of algorithm are follows:

1. Main genetic algorithm
a. Number of generations: 12
b. Population size: 50
c. Mutation rate: 5%
d. Cross over rate: 85%

2. Sub genetic algorithm:
a. Number of generations: 10
b. Population size: 75
c. Mutation rate: 5%
d. Cross over rate: 50%

2.2.5. Hardware platforms

The application was tested only on HPGCC cluster with Intel Xeon L5640 CPU @2.26
Ghz

2.2.6. Execution times

For measuring speed – up of algorithm we measure time needed for develop 15th
generation. After that we use our equation for calculate speed up of algorithm. The
results is shown in next tables.

D8.4 - Assessment of interoperability and scalability solutions Page 31 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Nodes/Cores t
Average
size of

stack (l)
t/I Speed - up Parallel Efficiency

1 X 12 0,5277 32,9200000 0,016028391
2 X 12 0,5708 50,2000000 0,011370745 1,409616609 0,704808305
3 X 12 0,2278 38,2200000 0,005960888 2,688926793 0,896308931
4 X 12 0,1603 31,2400000 0,005131462 3,123552625 0,780888156
5 X 12 0,1360 35,4400000 0,003836756 4,17758944 0,835517888

Table 2 - Calculate speed up of algorithm

HT(Nodes/Cores) t
Average
size of

stack (l)
t/I Speed - up Parallel Efficiency

1 X 12 X 2 0,3021 22,7000000 0,013309498
2 X 12 X 2 0,4289 52,5200000 0,008166195 1,629828659 0,814914329
3 X 12 X 2 0,2094 45,7600000 0,004576607 2,908158372 0,969386124
4 X 12 X 2 0,1831 46,3600000 0,003950551 3,36902307 0,842255767
5 X 12 X 2 0,1609 57,0000000 0,00282246 4,715566694 0,943113339

Table 3 - Calculate speed up of algorithm, HT

Figure 5 - Calculate speed up of algorithm

2.2.7. Memory Usage

Maximum memory usage per node is 2.5GB. Active memory is only 30MB per process,
but no matter the number of processes per node are started, total memory usage for
the processes on one node is 2.5GB.

D8.4 - Assessment of interoperability and scalability solutions Page 32 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.2.8. Profiling

Profiling was performed on the sequential algorithm in order to detect the initial CPU
utilization code. The MPI application profiling will be done in the following months.

2.2.9. Communication

The MPI communication totals to 200MB/s over QDR Infiniband for 48 processes.

2.2.10. I/O

The input and output of algorithm is small. Input contains: system of ODE or single
ODE, initial condition of ODE, interval in which we solve the equation, parameters
related with two genetic algorithm. The output is not depend of input parameter. The
output is txt file with the best results for each generation. Also for each generation we
measure same specific characteristic of population, like: time needed for developed
generation, average size of stack size, constant for the best solution etc., therefore the
output file is less than 1MB.

2.2.11. CPU and cache

No CPU level analysis was done.

2.2.12. Analysis

From our testing we concluded that hyper threading should be used when available. For
future work it remains to make MPI profiling and if needed to find an efficient strategy
of reordering of the computations in order to achieve more stable computational times.

D8.4 - Assessment of interoperability and scalability solutions Page 33 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.3. GIM

2.3.1. Summary

Code author(s): Neki Frasheri, Betim Cico

Application areas: Computational Physics

Language: C (gcc) Estimated lines of code: 3000

URL: http://wiki.hp-see.eu/index.php/GIM

2.3.2. Implemented scalability actions

Actions:
 Usage of different parallel paradigm: both OpenMP and MPI are used
 Profiling: runtime measured using /usr/bin/time to execute the program
 Usage of parallel libraries: no use of external parallel libraries
 Usage of compilers: GCC with standard flags for OpenMP and MPI

2.3.3. Benchmark dataset

The model consists of a 3D cuboid underground geosection (with depth half of
horizontal extension) represented with a 3D array of nodes.

Figure 6 - 3D cuboid underground geosection

The ground surface over the geosection where the gravity anomaly is surveyed is
represented by a 2D array of points.
The volume of data depends on the size of one edge of the model:
Points: surface points of 2D array = size ^ 2
Nodes: underground nodes of 3D array = (size ^ 3) / 2

The experimented model size was with linear size varying 11 – 21 – 41 – 81 –
161 nodes and respective step between nodes 400m – 200m – 100m – 50m –
25m.

D8.4 - Assessment of interoperability and scalability solutions Page 34 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Number of array nodes defines the volume of calculations for each iteration as in the
table:

Model size 2D array

points

3D array

nodes
Elementary
calculations Ny Nz

11 11 6 121 726 87,846

21 21 11 441 4,851 2,139,291

41 41 21 1,681 35,301 59,340,981

81 81 41 6,561 269,001 1,764,915,561

161 161 81 25,921 2,099,601 54,423,757,521

Table 4 - The volume of calculations for each iteration

The case 161x161x81 was not experimented because the huge runtime expected at the
range of 1 year.

2.3.4. Hardware platforms

Both OpenMP and MPI solutions were tested in two platforms:

Platform 1: HPCG-IICT,

 OpenMP scaled up to 16 cores due to hardware limitations.

 MPI scaled between 1 up to 256 cores.

Platform 2: Pecs Supercomputing Centre, Sun Grid Engine

 OpenMP scaled between 1 up to 1024 cores.

 MPI scaled between 1 up to 256 cores.

Number of cores varied with a factor of 2:

 1 – 2 – 4 – 8 – 16 – 32 – 64 – 128 – 256 – 512 – 1024

2.3.5. Execution times

Tests with OpenMP in HPCG are with 1, 8 and 16 cores:

Figure 7 - Tests with OpenMP in HPCG

Full scale tests with OpenMP were done in Pecs SC with up to 1024 cores:

D8.4 - Assessment of interoperability and scalability solutions Page 35 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 8 - Tests with OpenMP in Pecs SC

Tests with MPI were carried out in HPCG with up to 256 cores:

Figure 9 - Tests with MPI in HPCG

Tests with MPI were carried out in Pecs SC with up to 256 cores:

Figure 10 - Tests with MPI in Pecs SC

Evaluated runtime for the model size 161x161x81 (spatial discretization step of 25
meters) is one year.

D8.4 - Assessment of interoperability and scalability solutions Page 36 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.3.6. Memory Usage

The size of the model is defined by the 2D array of ground points and the 3D array of
geosection nodes. The application uses 6 arrays 2D and 1 array 3D. For considered
model sizes the use of main memory in Bytes is given in the table:

Model size
6 x 2D array

elements

3D array

elements

Used
Memory

(Bytes) Ny Nz

11 11 6 726 726 11,616

21 21 11 2,646 4,851 59,976

41 41 21 10,086 35,301 363,096

81 81 41 39,366 269,001 2,466,936

161 161 81 155,526 2,099,601
18,041,01

6

Table 5 – Memory usage of GIM

The model 161x161x81 was not experimented because of the huge runtime expected
(approximated one year)

The same range of storage capacity is used in hard-disk units for the results file.

The evaluation of memory requirements for the same geosection model with spatial
discretization step of 1 meter is 260 GB.

2.3.7. Profiling

Statistics related with the time statistics were obtained in two ways:
a) using the time function within the program

a) for MPI: MPI_Wtime()
b) for OpenMP: omp_get_wtime()

b) running it through the /usr/bin/time command:

a) (/usr/bin/time gmj4-v600omp ...) ...
b) (/usr/bin/time gmj4-v600mpi ...) ...

The time command was used for statistics:
 summary_per_processes user time
 elapsed time
 summary_per_cores CPU%

2.3.8. Communication

Network communication is not measured. Experimented models had memory
sizes up to 2.5 MB, requesting a negligible transfer time compared with the
runtime.

D8.4 - Assessment of interoperability and scalability solutions Page 37 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.3.9. I/O

Number of I/O operations with the external storage was not measured. The software
uses only central memory. Communication with the external storage are only at the
beginning (reading of input data) and at the end of execution (writing results data).

2.3.10. CPU and cache

Summary percentage of exploitation of cores was evaluated using the /usr/bin/time
command (see Profiling section). Usage of the cache was not measured.

2.3.11. Derived metrics

The scalability of algorithm was analyzed using the average net runtime per process /
thread.

2.3.12. Analysis

Algorithm works through scanning in each iteration of the 3D array of geosection nodes
to define the optimal one. Parallelism is achieved splitting the geosection in fragments
and scanning each of them in a separate core.

Runtime resulted comparable with the complexity of the algorithm. Considering N the
mean number of nodes in one edge of the 3D array representing the geomodel (the
linear size), the complexity of algorithm gives magnitude orders for the volume of
calculations (proportional with the runtime):

 magnitude of runtime per cores: O(1/cores)

 magnitude of runtime per linear_size per iteration: O(N^5)

 magnitude of runtime per linear_size: O(N^8)

Experiments were done for small and medium model discretization sizes. Scalability
degenerates for small models run in many parallel nodes. Maximal runtime obtained
was at the range of one day using 1024 cores for models with spatial discretization step
of 50m, which is large for many geophysical engineering problems. Prognosis for
models with spatial discretization step of 25m was at the range of one year in 1024
cores – practically impossible, while for engineering works smaller spatial steps to one
meter may be required.

Modification of the algorithm for the reduction of the volume of calculations leading to a
reduction of the runtime is considered. The request for many cores makes difficult the
widespread of similar algorithms for engineering works, because of difficulties to access
easily traditional parallel systems anytime, and the use of GPU for parallel processing is
considered as a way to bring necessary parallel capacities in desktop platforms.

D8.4 - Assessment of interoperability and scalability solutions Page 38 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.4. MSBP

2.4.1. Summary

Code author(s): Jumber Kereselidze, George Mikuchadze

Application areas: Life Science

Language: C/C++ Estimated lines of code: 337000

URL: http://wiki.hp-see.eu/index.php/MSBP

2.4.2. Implemented scalability actions
 As a first step application was ported on SEE-GRID infrastructure using MPICH1.
 At the beginning we were using GNU C/C++ compilers version 4.4.x which was

not optimized for current processors and hence run time was very large.
 At a second step the parallelization has been performed with OpenMPI

implementation of MPI (v. 1.6.x) installed on the hardware platforms that were
available to us.

 We tested various compilers and concluded that the within free compiler suites
the GNU Compiler v4.7.x and Open64 Compiler Suite with ACML provided the
best results for our AMD Opteron clusters.

 We used the both C compilers through mpicc wrapper with default flags which
were optimal for the working nodes

2.4.3. Benchmark dataset

For the benchmarking we chose a particular molecular structure with 53 atoms and 216
electrons for stable output.

2.4.4. Hardware platforms

NCIT-Cluster and Szeged supercomputer.

Two distinct hardware platforms were used:

 NCIT cluster with AMD Opteron 2435 CPU @2.6 Ghz in Romania;

 Szeged supercomputer with AMD Opteron 6174 (12-core Magny-Cours) CPU
@2.2 Ghz in Hungary.

2.4.5. Execution times

NCIT-Cluster

working nodes: 4 X 6core (24 cores) AMD Opteron 2435 (2.6Ghz)
mpi: openmpi v1.6
C compiler: gcc v4.7.0

cores Time (HH:MI:SS) # nodes
16 cores 06:25:26 2

D8.4 - Assessment of interoperability and scalability solutions Page 39 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

24 cores 05:33:34 2
32 cores 08:46:45 2

Szeged SC

working nodes: 4 X 12core (48 cores) AMD Opteron 6174 (2.2Ghz)
mpi: openmpi v1.6
C compiler: Open64 Compiler Suite: Version 4.2.4 with AMD Core Math Library (ACML)

cores Time (HH:MI:SS) # nodes
08 cores 10:17:25 2
16 cores 07:54:30 6
24 cores 07:01:17 2
32 cores 08:45:08 7
64 cores 09:03:20 13

2.4.6. Memory Usage

The maximum memory usage of MPI implementation was quite small 100Mb per
cpu/core.

2.4.7. Communication

The communication for this application is critical (Changing of the Infiniband QDR with
1Gb Ethernet results to 2-3 times increasing of execution time). Therefore we used
only clusters with the fast Infiniband network for the internal high-performance
communication.

2.4.8. I/O

The input for the application is small less then tens of MBs and output file size is in the
same size.

2.4.9. CPU and cache

We believe that most of the computations fit in the cache for the AMD Opteron CPUs.

2.4.10. Analysis

From our testing we concluded that most effective are CPUs with high brutal fpu
performance. Inter-process communication intensity reduces scalability efficiency and
the most effective are 16-24 CPU/cores for MPI parallelism.

D8.4 - Assessment of interoperability and scalability solutions Page 40 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.5. SET

2.5.1. Summary

Code author(s): Emanouil Atanassov

Application areas: Computational Physics

Language: C/C++ Estimated lines of code: 6000

URL: http://wiki.hp-see.eu/index.php/SET

2.5.2. Implemented scalability actions

Actions:

 Our focus in this application was to achieve the optimal output from the
hardware platforms that were available to us. Achieving good scalability depends
mostly on avoiding bottlenecks and using good parallel pseudorandom number
generators and generators for low-discrepancy sequences. Because of the high
requirements for computing time we took several actions in order to achieve the
optimal output.

 The parallelization has been performed with MPI. Different version of MPI were
tested and we found that the particular choice of MPI does not change much the
scalability results. This was fortunate outcome as it allowed porting to the Blue
Gene/P architecture without substantial changes.

 Once we ensured that the MPI parallelization model we implemented achieves
good parallel efficiency, we concentrated on achieving the best possible results
from using single CPU core.

 We performed profiling and benchmarking, also tested different generators and
compared different pseudo-random number generators and low-discrepancy
sequences.

 We tested various compilers and we concluded that the Intel compiler currently
provides the best results for the CPU version running at our Intel Xeon cluster.
For the IBM Blue Gene/P architecture the obvious choice was the IBM XL
compiler suite since it has advantage versus the GNU Compiler Collection in that
it supports the double-hammer mode of the CPUs, achieving twice the floating
point calculation speeds. For the GPU-based version that we developed recently
we relay on the C++ compiler supplied by NVIDIA.

 For all the choosen compilers we performed tests to choose the best possible
compiler and linker options. For the Intel-based cluster one important source of
ideas for the options was the website of the SPEC tests, where one can see what
options were used for each particular sub-test of the SPEC suite. From there we
also took the idea to perform two-pass compilation, where the results from
profiling on the first pass were fed to the second pass of the compilation to
optimise further.

 For the HPCG cluster we also measured the performance of the parallel code
with and without hyperthreading. It is well known that hyperthreading does not
always improve the overall speed of calculations, because the floating point units
of the processor are shared between the threads and thus if the code is highly
intensive in such computations, there is no gain to be made from

D8.4 - Assessment of interoperability and scalability solutions Page 41 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

hyperthreading. Our experience with other application of the HP-SEE project
yields such examples. But for the SET application we found about 30%
improvement when hyperthreading is turned on, which should be considered a
good results and also shows that our overall code is efficient in the sense that
most of it is now floating point computations, unlike some earlier version where
the gain from hyperthreading was larger.

 For the NVIDIA-based version we found that we have much better performance
using the newer M2090 cards versus the old GTX295, which was to be expected
because the integer performance of the GTX 295 is comparable to that of
M2090, but the floating performance of the GTX is many times smaller.

2.5.3. Benchmark dataset

For the benchmarking we fixed a particular division of the domain into

800 by 260 points, electric field of 15 and 180 femto-seconds evolution time. The
computational time in such case becomes proportational to the number of Markov Chain
Monte Carlo trajectories. In most tests we used 1 billion (10^9) trajectories, but for
some tests we decreased that in order to shorten the overall testing time.

2.5.4. Hardware platforms

HPCG cluster and Blue Gene/P supercomputer.

Four distinct hardware platforms were used:

 the HPCG cluster with Intel Xeon X5560 CPU @2.8 Ghz,

 Blue Gene/P with PowerPC CPUs,

 our GTX 295-based GPU cluster (with processors Intel Core i7 920)

 our new M2090-based resource with processors Intel Xeon X5650.

2.5.5. Execution times

Table 6 – Execution times of SET

D8.4 - Assessment of interoperability and scalability solutions Page 42 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Comparison of the execution time and parallel efficiency of SET application are shown
on HPCG (Table below) and BlueGene/P (Table above).

Table 7 Comparison of the execution time and parallel efficiency of SET

Figure 11 – CPU time on Blue Gene/P

2.5.6. Memory Usage

The maximum memory usage of a single computational thread is relatively small, in the
order of 100 MB.

On the GPUs there are several different kinds of memory, some of them rather limited.
The available registers and the shared memory are especially problematic, since there
is a risk if the available registers are all used some local variables to be spilled to global
memory, encountering high latency and other issues. Still we found reasonable
performance using 256 GPU threads, which is an acceptable number.

2.5.7. Profiling

Profiling was performed in order to improve the compiler optimisation during the second
pass and also in order to understand what kind of issues we may be having in the
application. We found as expected that most of the computational time is spent in
computing of transcendental function like sin, cos, exp, and also in the generation of
pseudorandom numbers. We attempted in the GPU version to replace the regular sin,

D8.4 - Assessment of interoperability and scalability solutions Page 43 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

cos, etc., with the less-accurate versions that are more efficient, but we found that the
gain from that is relatively small and is not worth the loss of accuracy. For the GPU-
based version we obtained relatively high percentage of divergence within warps, which
means that some logical statements are resolved differently within threads of the same
warp and there is substantial loss of performance. So far we have not been able to re-
order the computation so as to avoid it.

2.5.8. Communication

The communication for this application is not critical in the sense that the
communication takes less than 10% of the execution time.

2.5.9. I/O

The input for the application is small, containing the parameters of the problem at
hand. The output is written out at the end of the computation and its size depends on
the parameters. For a reasonable size of the domain the output is in the order of
several megabytes. More accurate mesh is reasonable only for smaller evolution times
and the output size will be proportional to the size of the mesh

2.5.10. CPU and cache

We believe that most of the computations of the CPU-based version fit in the cache for
the Intel-based version. For the PowerPC processors of the Blue Gene/P some lookup
operations when sampling the random variables use the main memory and thus entice
higher latency. For the GPU-based version the situation is similar, since some of the
tables are larger than the size of the so-called shared-memory. In both cases, the
overall significance of these operations is less than 5%.

2.5.11. Analysis

From our testing we concluded that hyperthreading should be used when available,
production Tesla cards have much higher performance than essentially gaming cards
like GTX 295, two passes of compilation should be used for the Intel compiler targeting
Intel CPUs and that the application is scalable to the maximum number of available
cores/threads at our disposable. For future work it remains to find an efficient strategy
of reordering of the computations on the GPUs in order to avoid warp divergence. For
the CPU-based version we have also developed an MPI meta-program that measures
the variation and uses genetic algorithm (from galib library) to optimise the transition
density. This step will be added as a pre-processing stage of the program in order to
provide some speedup in order of 20% to the overall computations, but to do so we
need to find the right balance between this stage and the main computational stage.

D8.4 - Assessment of interoperability and scalability solutions Page 44 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.6. NUQG

2.6.1. Summary

Code author(s): Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia

Application areas: Computational Physics

Language: C/C++ Estimated lines of code: 260000

URL: http://wiki.hp-see.eu/index.php/NUQG

2.6.2. Implemented scalability actions

The NUQG application modules are developed at IPB's PARADOX cluster, and within the
framework of HP-SEE project ported to the HPCG and PECS SC. NUQG SPEEDUP module
is MPI-parallelized at HPCG cluster, while the NUQG GP module is OpenMP-parallelized
at PECS SC. The applications are compiled using the Intel C/C++ compiler that gives
much better performance compared to the GCC compiler. In addition, NUQG SPEEDUP
module is improved using the algorithm that uses Sobol’s set of quasi-random
numbers.

2.6.3. Benchmark dataset

Performance of the NUQG SPEEDUP module is assessed for the case of a quantum
anharmonic potential, with the level p = 4 effective action, and using the target
bisection level s = 8 (corresponding to the calculation of 255-dimensional integrals).
Each quantum amplitude is calculated using the Monte Carlo sample of NMC = 109
trajectories.

Performance of the NUQG SPEEDUP quasi-MC algorithm is also assessed for the
anharmonic potential, with the effective action level p = 4, bisection level s = 5, and
using the Monte Carlo sample of NMC = 108.

The NUQG GP module performance at single multi-core machine is calculated for a 3D-
algorithm for space discretization with the grid mesh Nx=Ny=1200 and Nz=600.

2.6.4. Hardware platforms

The NUQG application is developed at PARADOX cluster (84 worker nodes with 2 x quad
core Xeon E5345 @ 2.33 GHz with 8 GB of RAM per node), and ported to HPCG (36
blades BL 280c with 2 x Intel Xeon CPU X5560 @ 2.8 GHz) and Pesc SC resource
centres (SGI 1000 Ultraviolet with SMP ccNUMA architecture - Intel Xeon X7542 6-core
processors).

2.6.5. Execution times

The NUQG SPEEDUP module is MPI parallelized. Its execution time and speedup as a
function of the number of CPU cores at PARADOX and HPCG clusters is illustrated in
Figure 12. While the speedup remains practically perfect on both of these two clusters,

D8.4 - Assessment of interoperability and scalability solutions Page 45 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

better absolute execution times at HPCG cluster is a consequence of a higher CPU
frequency.

Further improvement in the performance of the NUQG SPEEDUP module is achieved by
using quasi-random numbers instead of pseudo-random numbers generated by the
SPRNG algorithm. The improved algorithm uses Sobol’s set of quasi-random numbers
for generation of trajectories relevant for calculation of transition amplitudes in the
path integral formalism. The ratio of the CPU execution time of the original MC and the
improved quasi-MC code in order to achieve the same precision of the amplitude is
illustrated in Figure 13. This result is obtained at HPGC cluster.

Figure 12 - Execution time and speedup as a function of the number of CPU
cores at PARADOX and HPCG clusters

Figure 13 - Ratio of the CPU execution time of the original MC and the improved
quasi-MC code as a function of the precision of the amplitude.

The NUQG GP module is OpenMP parallelized. The speedup of the NUQG GP 3D module
for real- and imaginary-time propagation at a single large multi-core machine is given
in Figure 14.

D8.4 - Assessment of interoperability and scalability solutions Page 46 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 14 - Speedup in the execution time of the NUQG GP module as a function
of the number of CPU cores.

The NUQG GP is ported to PECS shared memory cluster - SGI 1000 Ultraviolet with SMP
(ccNUMA) architecture. Since NUQG GP module is highly memory-intensive application,
and due to the fact that NUMA architecture memory access time depends on the
memory location relative to a processor, initial performance of the code was very
fluctuating. The stable performance is achieved when all available memory is utilized.
Effective speedup of the application for such cases is given in Figure 15, while Figure 16
shows total occupied memory at the cluster.

Figure 15 - Effective speedup of the
NUQG GP application.

Figure 16 - NUQG GP total memory
allocation.

2.6.6. Memory Usage

Memory usage of NUQG SPEEDUP and GP modules depends on the physical
characteristics of the physical system of interest. For typical configurations, NUQG
SPEEDUP module requires less than 1 GB of RAM, while the execution of NUQG GP 3D
module typically requires more than 32 GB of RAM.

D8.4 - Assessment of interoperability and scalability solutions Page 47 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

In the NUQG SPEEDUP module, maximal accessible level p is limited by the amount of
memory required for symbolic derivation of the effective potential. This symbolic
calculation is implemented in Mathematica for general 1D, 2D, and 3D potentials, as
well as for a general many-body theory in arbitrary number of spatial dimensions.
Execution of these codes for level p = 10 requires 10-15 MB of RAM in 1D, 60 MB in 2D,
860 MB in 3D, while the execution of the many-body SPEEDUP Mathematica code
requires approximately 1.6 GB. Beside of this, minor additional memory (less than 100
MB) is required by the SPEEDUP C code.

Memory consumption of the NUQG GP module depends on a number of spatial
dimensions (1D, 2D, 3D), symmetries of the trapping potential of the Bose-Einstein
condensate (axially-symmetric, spherically-symmetric), and the type of time
propagation studied (real-time, imaginary-time). The following table illustrates typical
memory usage of 12 NUQG GP module codes.

NUQG GP code Memory usage

imagtime1d > 1 GB

imagtimecir > 1 GB

imagtimesph > 1 GB

realtime1d > 2 GB

realtimecir > 2 GB

realtimesph > 2 GB

imagtimeaxial > 8 GB

imagtime2d > 8 GB

realtimeaxial > 16 GB

realtime2d > 16 GB

imagtime3d > 16 GB

realtime3d > 32 GB

Table 8 - Memory usage of NUQG GP codes.

2.6.7. Profiling

Profiling of the NUQG SPEEDUP module shows that most of the computational time is
spent in computing of transcendental function (exp), as well as in the calculation of the
effective potential. Based on this, using the Intel compiler optimization, calculation of
transcendental functions is reused. The NUQG GP module profiling shows that most of
the time is spent in time propagation functions and in the normalization. We have
managed to optimize the normalization function using several analytical insights, while
the time propagation functions will require further cache optimization.

2.6.8. Communication

Communication for the NUQG SPEEUP module is not critical, but, on the contrary, it
becomes one of the main issues for the NUQG GP module. Further optimizations of the
GP module will focus on this.

D8.4 - Assessment of interoperability and scalability solutions Page 48 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.6.9. I/O

Input parameters of the NUQG SPEEDUP module are specified from the command line,
while the output is a small text file (up to 1KB) that contains numerical values of
transition amplitudes for different levels p. The NUQG GP module has a small input file
that describes physical system of interest. In addition to this, it is possible to specify
the initial state of the condensate. This initial state is provided as a single file, whose
size depends of the spatial grid mesh, and can be from a few MBs to several GBs. The
output of the NUQG GP module is also configurable, and may require from several GBs
to several TBs of disk space.

2.6.10. Analysis

The NQG SPEEDUP module gives excellent performance results. The application is in a
mature stage, and further optimization may give very small improvements in the
performance. On the other hand, the NUQG GP module invites further optimizations.
The further development of this application will be focused on MPI parallelization, which
will provide better scalability on shared memory systems, but also at e-Infrastructure
with the InfiniBand interconnect. Also, cache optimization within time propagation
functions may give better performance.

D8.4 - Assessment of interoperability and scalability solutions Page 49 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.7. SFHG

2.7.1. Summary

Code author(s): Sreten Lekic, Igor Sevo, Mihajlo Savic

Application areas: Computational Physics

Language: C/C++, Fortran Estimated lines of code: 2900

URL: http://wiki.hp-see.eu/index.php/SFHG

2.7.2. Implemented scalability actions
 We have first refactored the serial Fortran code we had and after that created a

new C++ code as existing Fortran code was unsuitable for parallelization. News
approach yielded much better performance, even is serial mode, with execution
time decrease to approximately 1/15 of original. This was tested only on a small
scale problem as anything over the level of 7 was unusably slow on original
code.

 Parallelization was attempted with MPI and OpenMP. Due to the nature of the
problem being solved, MPI yielded improvements only up to a small number of
CPUs and as such was dropped for current time frame. Version of code with
OpenMP was fully developed and benchmarked. Hybrid approach is planned for
future versions.

 We have tested three different compilers: Open64, Portland Group, Intel and
GNU C/C++ compilers. Open64 and PGCC had an incomplete support for
OpenMP features required due to either somewhat older version or incomplete
standard support and as such provided limited benefit as compared to serial
code. ICC compiled with no problems even at –O3 level but the performance was
found to be inferior to code produced by GCC (execution time for both serial and
parallel version was up to two times longer for all types of walks and tested
levels).

 We have tested performance and correctness of different optimization levels. We
found significant performance increase when using –O3 with default settings for
GCC 4.5 and GCC 4.6. Execution time was 1.8 times shorter with –O3 as
compared to no optimization for serial and 1.6-1.8 times shorter for parallel
version.

 Not all versions of GCC support all needed OpenMP functions so we have to
emulate desired behavior on older versions (GCC 4.3 at Pecs SC and GCC 4.1 as
Szeged SC).

 We have tested different approaches to new thread creation as default OpenMP
settings were proving to be overly optimistic at higher levels. The issue arises
from the huge number of threads created by nested parallel code. If we severely
limit the number of threads or remove nesting and expand manually first few
levels we achieve very limited speedup which decreases with the level of the
problem as there are lingering long running threads that severely decrease
parallel performance. On default settings we achieved excellent speedup up to
level 8 but had issues with huge number of threads created by OpenMP at level
9. After performing benchmarking with different parameters we settled at
limiting the nesting at level 21 and using maximum 2 threads per level. Testing
has shown that we are running manageable number of active threads (under 40
per CPU core) with no significant loss of performance.

D8.4 - Assessment of interoperability and scalability solutions Page 50 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.7.3. Benchmark dataset

We have used Sierpinski gaskets of levels 7, 8 and 9 for testing. Level 7 was used for
initial very small scale tests while levels 8 and 9 were used for proper performance
testing.

2.7.4. Hardware platforms

We have performed performance testing on:
 PARADOX with up to 8 CPU cores

o Intel(R) Xeon(R) CPU E5345 @ 2.33GHz
o Small scale test not suitable for true scalability tests

 BA-01-ETFBL with up to 16 CPU cores
o AMD Opteron 6128 @ 2.00 GHz – total 16 CPU cores

 Szeged SC with up to 48 CPU cores
o AMD Opteron 6174 @ 2.00 GHZ – total 48 CPU cores

 Pecs SC with up to 48 CPU cores – SGI 1000 Ultraviolet
o Intel Xeon X7542 – 1152 total CPU cores

2.7.5. Execution times

It can be seen from the execution times that for small scale tests with levels of up to 8
there is little benefit of scaling past 16 or at most 24 CPU cores. While the ratio of wall
time and CPU time does significantly increase, the number of found walks per second is
entering saturation. One also has to take into consideration an architecture and
organization of a specific SMP implementation especially in NUMA cases.

For level 9 we can see that there are clear benefits of scaling past 16 CPU cores and
this level was chosen for scalability testing with larger number of cores. Walks per
second values are not comparable among different levels.

Cores Walk
type Level

Nest

limit
Wall

time [s]
CPU

time [s]
Wall/CPU

time Eff. Walks/s

1 A (2) 8 14 4041 4040 1.00 1.00 16388.71

2 A (2) 8 14 2050 4098 2.00 1.00 32305.74

4 A (2) 8 14 1044 4155 3.98 0.99 63435.61

8 A (2) 8 14 571 4354 7.63 0.95 115983.84

12 A (2) 8 14 455 4664 10.25 0.85 145553.35

16 A (2) 8 14 405 5023 12.40 0.78 163522.89

8 A (2) 9 21 39227 300334 7.66 0.96 62026.69

16 A (2) 9 21 21134 336201 15.91 0.99 115128.27

 Table 9 - Scalability test results for BA-01-ETFBL with up to 16 CPU cores

D8.4 - Assessment of interoperability and scalability solutions Page 51 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 17 - CPU / Wall time ratio as function of number of CPU cores (BA-01-
ETFBL)

Cores Walk
type Level

Nest

limit
Wall

time [s]
CPU

time [s]
Wall/CPU

time Eff. Walks/s

6 A (2) 8 emul. 486 2803 5.77 0.96 136269.08

12 A (2) 8 emul. 406 3487 8.59 0.72 163120.13

18 A (2) 8 emul. 375 4244 11.32 0.63 176604.73

24 A (2) 8 emul. 319 5089 15.95 0.66 207607.44

48 A (2) 8 emul. 413 8216 19.89 0.41 160355.38

48 A (2) 9 emul. 18415 561336 30.48 0.64 132127.11

 Table 10 - Scalability test results for Pecs SC with up to 48 CPU cores

D8.4 - Assessment of interoperability and scalability solutions Page 52 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 18 - CPU / Wall time as function of number of CPU cores (Pecs SC)

2.7.6. Memory Usage, CPU and cache

Memory requirements for this application are very modest and comfortably fit inside
operating RAM with significant percent also fitting inside cache of CPU. Total memory
requirements depend on level of recursion, nesting level and walk type but are under
128 MB total for tested levels.

2.7.7. Profiling

We have used gprof to find bottlenecks in execution and measure impact of fork
placement at various steps in the algorithm.

2.7.8. Communication and I/O

Communication and I/O expenses are not critical for this application. We do however
have a significant influence of thread forking to overall performance, which was
explained in previous sections. This is also a reason that MPI version provided very
limited performance increase.

2.7.9. Analysis

We have concluded that for this application significant performance increase was a
result of rearchitecturing the application by producing new C++ code. MPI currently
provides negligible benefits while use of OpenMP on SMP machines produces significant
performance gains and scales very well up until tested 48 CPU cores. In order to
achieve better scalability it is necessary to use higher levels of recursion for Sierpinski
gaskets as level 8 stops producing meaningful performance increase after 24 CPU
cores.

D8.4 - Assessment of interoperability and scalability solutions Page 53 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.8. CFDOF

2.8.1. Summary

Code author(s): Sreten Lekic, Mihajlo Savic

Application areas: Computational Chemistry

Language: C, OpenFOAM Estimated lines of code: 300

URL: http://wiki.hp-see.eu/index.php/CFDOF

2.8.2. Implemented scalability actions
 In this application we are using OpenFOAM CFD toolbox and as such we did not

alter the source code of the application.
 We have experimented with different mesh generation approaches and mesh

partitioning algorithms in order to obtain better scalability.
 We created a proof-of-concept parallel post-processing application but we are

currently facing stability issues with it.

2.8.3. Benchmark dataset

We used simplified smaller scale methane burner and rhoReactingFoam solver for
benchmarking (gor_fine_paradox4). Total mesh size was 811 MB and contained
1893571 points, 18913870 faces and 9132732 tetrahedral cells.

2.8.4. Hardware platforms

We have performed performance testing on:
 PARADOX with up to 32 CPU cores

o Intel(R) Xeon(R) CPU E5345 @ 2.33GHz
 BA-01-ETFBL with up to 16 CPU cores

o AMD Opteron 6128 @ 2.00 GHz – total 16 CPU cores

2.8.5. Execution times

It can be seen from table with execution times that there are two dominant factors:
pre/post-processing and simulation. Pre-processing and especially post-processing time
increases with number of CPU cores used for simulation but, fortunately, not
dramatically.

Table 11 - Scalability test results for PARADOX with up to 32 CPU cores

CPU cores Pre-/Post-
processing [s] Simulation [s] Total [s] Simulation

Speedup
Total

Speedup

1 0.00 127137.60 127137.60 1.00 1.00

4 2560.00 33922.80 36482.80 3.75 3.48

8 2650.72 17496.00 20146.72 7.27 6.31

16 2817.06 8359.20 11176.26 15.21 11.38

32 3140.02 4135.05 7275.07 30.75 17.48

D8.4 - Assessment of interoperability and scalability solutions Page 54 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 19 - Simulation and total times and speedup as function of number of
CPU cores

2.8.6. Memory Usage, CPU and cache

Memory requirements for this application are heavily dependent on the size of the
problem being simulated. In our testing, we concluded that one should not use over 1
GB per CPU core (which fits with most of the problems simulated as well as available
project infrastructure).

2.8.7. Profiling

As we did not alter the source code of the CFD and chemistry solver we did not have
the need for profiler.

2.8.8. Communication and I/O

I/O operations were affecting mostly pre- and post-processing parts of the workflow but
not in the significant amount. Communication between processes can be minimized by
using adequate mesh partitioning approach. For generic use case we would suggest
using scotch which is designed to minimize number of processor boundaries. If there is
sufficient knowledge of concrete simulation and model behavior better results can be
achieved by using hierarchical or, better yet, manual decomposition.

2.8.9. Analysis

Since this application was based on tried and true solvers that have already been
thoroughly benchmarked and analyzed, we focused our attention to issues specific to
this concrete case.

D8.4 - Assessment of interoperability and scalability solutions Page 55 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

When discussing scalability of simulation, one has to take into consideration several
factors. If we are dealing with cold flow simulations, with no chemistry involved, then it
is fairly easy to achieve good scalability of simulation. But, when we include chemistry
in simulation things start to get complicated as chemistry is more time consuming to
simulate especially when dealing with complex reactions and more realistic models. As
can be seen on Figure 20 close to the beginning of the simulation, computationally
intensive part of the simulated model is fairly small and using huge number of CPUs
would bring limited benefits. If increasing performance is a must even a this stage, one
must take care of properly partitioning the mesh so that we do not end up with many
processes waiting for few with more complex simulation to handle. After a while, we
can see that most of the model volume is now involved in time consuming chemistry
calculations and as such it becomes easier to decompose the mesh in such a way to
achieve good scalability.

Figure 20 - Cross section of burner after T=0,1 s and T=1,3 s (illustration)

Above analysis applies foremost to solvers that work in time domain. When we are
dealing with steady-state solvers, according to our results, they tend to reach an
analogous point in fairly short amount of time and are as such better, or at least easier,
choices for good scalability.

D8.4 - Assessment of interoperability and scalability solutions Page 56 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.9. DNAMA

2.9.1. Summary

Code author(s): The Exelixis Lab

Application areas: Life Sciences

Language: C Estimated lines of code: 50000

URL: http://wiki.hp-see.eu/index.php/DNAMA

2.9.2. Implemented scalability actions

 RAxML versions can be divided by parallelization methods as:
 Coarse grained parallelization – using MPI
 Fine grained parallelization – using OpenMP and later Pthreads
 Hybrid version, which combines coarse and fine grained parallelization.
 Application was tested without and with SSE3 support for Intel compilers
 Raxml was compiled with GCC and Intel compiler (ICC)
 Work was performed for smaller and larger datasets for single gene and up to 5

genes in multigame mode
 Since RAxML doesn’t offer some tree visualization tools for randomly generated

and best trees we used Dendroscope and ugene for this action.
 Application was launched on platform with PBS scheduler (HPCG) and Sun Grid

Engine (Pecs SC and Debrecen SC)

2.9.3. Benchmark dataset

Benchmark was completed on sample of 213 DNA sequences of Salmo trutta from
different geographical region of Europe - 552 base pairs; 20 DNA sequences with 5
genes for multigene analysis

2.9.4. Hardware platforms

Three supercomputers are used for RAxML tests:

 HPCG cluster with Intel Xeon X5560 CPU @2.8 Ghz,

 Debrecen SC with Intel Xeon X5680

 Pecs SC with Intel Xeon X7542 (Nehalem EX)

2.9.5. Execution times

Executing time is measured on HPCG cluster using MPI and OpenMP and GCC and Intel
compiler. MPI test performed with 3200 bootstraps (randomized trees) while Pthreads
was done with 100 bootstraps.

D8.4 - Assessment of interoperability and scalability solutions Page 57 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Table 12 – DNAMA MPI result

Cores
GCC ICC

CPU time [s] Speedup Efficiency CPU time [s] Speedup Efficiency

16 4544,49 4348,24

32 2426,11 1,87 0,94 2278,67 1,91 0,95

64 1203,55 3,78 0,94 1155,79 3,76 0,94

128 646,42 7,03 0,88 619,96 7,01 0,88

256 382,62 11,88 0,74 367,97 11,82 0,74

Figure 21 – DNAMA MPI result

Cores
GCC ICC

CPU time
[s]

Speedu
p

Efficienc
y

CPU time
[s]

Speedu
p

Efficienc
y

1 1185,35 1195,83
2 815,34 1,45 0,73 823,37 1,45 0,73
3 697,62 1,70 0,57 621,74 1,92 0,64
4 601,46 1,97 0,49 552,54 2,16 0,54
6 557,04 2,13 0,35 504,29 2,37 0,40
8 549,03 2,16 0,27 492,02 2,43 0,30

12 608,27 1,95 0,16 517,01 2,31 0,19
16 656,04 1,81 0,11 529,77 2,26 0,14

Table 13 – DNAMA Pthreads result

D8.4 - Assessment of interoperability and scalability solutions Page 58 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 22 - DNAMA Pthreads result

2.9.6. Memory Usage

RAxML uses up to 10MB per working bootstrap (or per core) or up to 160 MB per server
on HPCG, so it can be classified as low consumer of RAM.

2.9.7. Profiling

Profiling was done by code developers.

2.9.8. Communication

Communication takes less than 10% of time and therefore DNAMA can be classified as
not communication intensive application.

2.9.9. I/O

Input file is small or medium sized (up to few MB) as well as main output files.
Application makes few files for every bootstrap which summary size can go up to few
GB, but they are downloaded only in case of analysis of every tree in bootstrap, not
only best tree.

2.9.10. CPU and cache

We consider that most of the computations of the RAxML work in the cache for the
tested Intel-based version.

2.9.11. Analysis

MPI version of RAxML shows relatively good results and we used them most of time,
mostly up to 128 cores. Number of used cores should be consummate with number of
executed bootstraps and number of DNA sequences. GCC and ICC showed similar
results with MPI.

D8.4 - Assessment of interoperability and scalability solutions Page 59 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Since Pthreads version gave us bad results for larger number of cores we decided to
use application with 2 and 4 threads in regular use. Pthreads parallelization is per
length of DNA sequence, so this version can give better performance for different
dataset with larger number of base pairs per DNA sequence, especially with more than
10.000 base-pairs. Intel compiler gave us better result than GCC for larger number of
cores.

Hybrid version, which combines MPI and Pthreads, was tested, but their scalability
results were weaker since Pthreads can’t give enough speedup with dataset used in
benchmark. RAxML light and Examl was also tested, which do computations over
predefined tree. RAxML was more comfortable for our work, because it makes
computation over different, randomly generated trees and gives best tree as a result.

D8.4 - Assessment of interoperability and scalability solutions Page 60 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.10. AMR_PAR: porting from Windows to Linux

2.10.1. Summary

Code author(s): Boris Rybakin, Nicolai Iliuha

Application areas: Computational Physics

Language: Fortran Estimated lines of code: 700 (9 modules)

URL: http://wiki.hp-see.eu/index.php/AMR_PAR

2.10.2. Implemented scalability actions

Initial version of the AMR_PAR application elaborated for running in IMI ASM-RENAM
Cluster environment that supported virtualization platforms and allowed to use various
operating systems. The application was elaborated in OpenMP mode and prepared for
execution on Microsoft Windows Compute Cluster 2003.

For transforming AMR_PAR application to run in the regional HP-SEE infrastructure the
application developers made preparation works for the application porting to the assign
remote sites. Preparation was being carrying out on virtual machine with Scientific
Linux 5.5 and Intel® Parallel Studio XE 2011 for Linux.

2.10.2.1 The sources of some problems when porting applications’

code from Windows to Linux platform

 Using in program code blocks in other languages;
 Using the default declarations of variables and constants. They can be signed or

not, long or short integer;
 The absence of variables initialization when allocating memory for the structure

or class. Do not rely on the compiler options to automatically clear the memory
with zeros;

 Not set the initial values for local variables. Failure can take many forms when
initial values of the variables are erroneous. When the program runs under the
debugger, memory is usually cleared, making it difficult to localize the error;

 Lack of control when using pointers in C language or C++. When passing
pointers as parameters to functions it is appropriate to pass the size of the area
referenced by a pointer. If a pointer is passed to a structure it is expedient to
provide a field with size of the structure, which must be filled before the function
call. After receiving of the pointer function first step is to check that the pointer
is not equal to zero and the size of the corresponding field has a valid value;

 Function returns a pointer to a local variable - this code may work correctly, but
porting to another platform or using of a different compiler generates an error
because of differences in the organization of the stack. These errors should be
excluded at the stage of analyzing of the source code - or the function must
return a local variable, or to fill the data area which is given by a pointer;

 The lack of control of the results of memory allocation. Failure to allocate
memory can lead to an exception or return a null value. It depends on the
compiler, its parameters and the platform used;

 Lack of control over the release of repeatedly allocated memory area. Analysis of
the pointer at the end of the program and after the redistribution of memory will
help to avoid waste of resources.

D8.4 - Assessment of interoperability and scalability solutions Page 61 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.10.2.2 Problems when porting interactive applications from
Windows to Linux platform

As the results of use of visual development environments - interface mixed with
"computing" part.

Use of system-dependent functions for the implementation of the processing events
associated with I/O devices: mouse, keyboard, timer, etc. Dominated calls to API
(application programming interfaces) and MFC (Microsoft Foundation Classes) instead of
the standard library functions.

2.10.2.3 The development of portable code with a graphical

interface.

First of all, it is necessary to design the program or make changes to the ready-one to
realize graphical user interface in separate routines. Interactive and computing parts
should be separated in source code.

The problem of porting of the source can be solved in two ways:
 The first - to use the POSIX (Portable Operating System Interface for Unix)

standard functions;
 The second - to create the macro for the required functions in order the main

text looks the same on different platforms.
Most often used encoding for storing text data are OEM, ANSI, KOI-8 and UNICODE. In
different operating systems functions which work with character strings require
different encoding. For permanent storage is advisable to use ONE encoding of all text
data. Before the output of the text on the screen it can be recoded in accordance with
the required current encoding.

To simplify the maintenance and upgrading of software it is need to design reentrant
subroutines. One of the conditions for this is to minimize the use of global variables -
use them to store constants or include in routines critical sections and semaphores. In
most cases local variables and parameters passing can be used. But in this case it may
be a bug related to stack overflow.

2.10.2.4 Packages for helping to solve the problem of porting

applications

1. Mainsoft for UNIX and Linux, formerly called Visual MainWin for Unix and Linux. It is
a cross-platform development solution that enables software developers to write Visual
C++ applications in the productive Microsoft Visual Studio development environment
and deploy them natively to a variety of UNIX and Linux platforms.

The package consists of several parts:
 Inspector of code that allows to detect system-dependent areas;
 Preprocessor that prepares the source code for compiling with GCC (or any other

UNIX-compiler);
 An extensive library of functions, implementing:

o Windows-primitives (SEH, DLL, processes / threads, tools for their
synchronization, registry, clipboard and national languages support);

o a graphical and user interface (GDI32, USER32);
o COM-model (ActiveX, OLE, MIDL, DCOM);
o runtime library (ALT, MFC, C Runtime library).

http://dev.mainsoft.com/Default.aspx?tabid=53

D8.4 - Assessment of interoperability and scalability solutions Page 62 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2. wxWidgets (formerly wxWindows) is a widget toolkit and tools library for creating
graphical user interfaces (GUIs) for cross-platform applications. wxWidgets enables a
program's GUI code to compile and run on several computer platforms with minimal or
no code changes.

It is free and open source software, distributed under the terms of the wxWidgets
License, which satisfies those who wish to produce for GPL and proprietary software.

http://www.wxwidgets.org/about/feature2.htm

Porting MFC applications to Linux. A step-by-step guide to using wxWindows:

https://www.ibm.com/developerworks/library/l-mfc/

2.10.2.5 Specificity of porting of AMR_PAR application (64 bit,

Fortran)

Applications, performed on the computing resources of the project do not have
interactive graphic interfaces. In this case one of the ways to avoid errors when porting
- to use in Windows and Linux compilers, produced by one developer, for example Intel
Parallel Studio XE for Windows and Linux.

The absence of a graphical interface, the use of standard functions and libraries, taking
into account the previously described problems of portability allows porting of
application to reduce to a simple recompilation of the source code.

For AMR_PAR application porting to Linux next main steps were done:

 Removed interactive interface;

 Removed block visualization of calculation results;

 Dynamic memory was used for large arrays;

 Intel Parallel Studio XE for Windows and Linux were used. Next keys were used
when compiling the application:

 «-heap-arrays» - all local arrays are moved to the heap, greatly reducing the
load on the stack.

 «-mcmodel large -shared-intel» - to use static arrays larger than 2 Gb.

2.10.2.6 Intel Parallel Studio XE 2011 with VS2010.

http://software.intel.com/en-us/articles/intel-parallel-studio-xe/

Intel® Parallel Studio XE parallel software development suite combines Intel's C/C++
and Fortran compilers, performance and parallel libraries, error checking, code
robustness and performance profiling tools into a single suite offering.

This helps boost application performance and increase the code quality, security, and
reliability needed by high-performance computing.

At the same time, the suite eases the procurement of all the necessary tools for high
performance, and simplifies the transition from multicore to manycore processors in the
future.

Intel® Parallel Studio XE includes the following industry-leading components:
 Intel® Composer XE Optimizing compilers and high-performance libraries

 Intel® Inspector XE Powerful thread and memory error checker

D8.4 - Assessment of interoperability and scalability solutions Page 63 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

 Static Security Analysis Close security vulnerabilities and weed out a range of
bugs

 Intel® VTune™ Amplifier XE Advanced performance profiler

 Intel® Parallel Advisor Threading assistant tool for C/C++ Microsoft Visual
Studio developers - available with Windows versions of Intel® Parallel Studio XE
or Intel® C++ Studio XE.

2.10.3. Hardware platforms

Testing procedure for the application version that was transferred to Linux platform is
based on using access to SGI UltraViolet 1000 supercomputer, located in Pecs, Hungary
at NIIFI branch. Access to Pecs supercomputer was provided within special Agreement
signed by RENAM and NIIFI;

2.10.4. Execution times

Acceleration and Run Time dependences from CPU cores is presented on the figure
below. For 128x128x128 dimension best number of cores — 4.

4 cores: walltime - 3,3 min, CPU time -13,2 min.

16 cores: walltime - 3,7 min, CPU time - 59,1 min

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

5,2 7,4
11,8 13,2

18,4 20,3
23,3

28,1
34,3 33,6

42,0 43,5
49,2 49,5 50,8

59,1

5,2 3,7 3,9 3,3 3,7 3,4 3,3 3,5 3,8 3,4 3,8 3,6 3,8 3,5 3,4 3,7

AMR_PAR 128x128x128 5 layers,HPCG cluster
CPU and Wall Times

CPU Minutes
Wall Minutes
Wall2 (Omp)

Cores

M
in

ut
es

Figure 23 – AMR_PAR, HPCG cluster, CPU and wall times

2.10.5. Memory Usage

Calculated requirements of computational resources for the current OpenMP version of
AMR_PAR application

D8.4 - Assessment of interoperability and scalability solutions Page 64 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Dimension Layers Cores RAM Gb CPU minutes

128x128x128 5 200000 4 0,789 28 3,5
256х256х256 5 200000 4 5,972 273 68
256х256х256 5 200000 8 6,062 527 66
256х256х256 5 200000 12 6,068 807 68
384x384x384 5 200000 8 19,2 2110 270
448x448x448 5 200000 8 — 16 37,7 ~ 4500 ~ 500
512x512x512 5 200000 8 — 16 ~ 55,6 ~ 130 hours ~ 17 hours

1024x1024x1024 5 200000 16 — 32 ~ 415 ~ 2000 hours ~ 248 hours
2048x2048x2048 5 200000 32 — 64 ~ 3250 ~ 1200 days ~ 154 days

Max Iteration
per level

WallTime
minutes

Table 14 – Memory usage of AMR_PAR

2.10.6. Analysis

Some application scalable problems were found during tests. Information was begun
analysing by the application developers. After negotiation of approaches for creation of
a new version of scalable OpenMP AMR_PAR application the refine code was proposed
for further application development.

D8.4 - Assessment of interoperability and scalability solutions Page 65 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.11. DeepAligner and DiseaseGeneMapper

2.11.1. Summary

Code author(s): Gergely Windisch, Akos Balasko, Miklos Kozlovszky

Application areas: Life sciences

Language: C++, BASH Estimated lines of code: 2000

URL:

 http://wiki.hp-see.eu/index.php/DeepAligner

 http://wiki.hp-see.eu/index.php/DiseaseGene

2.11.2. Application description

The two portlets developed at Obuda University (Deep Aligner and Disease Gene
Mapper) share a common algorithm which takes up about 95% of the total execution
time so the scalability studies were done together for both applications.

The Disease Gene Mapper service allows researchers to utilize the HPC infrastructure to
find gene sequences in an organism which have already been connected to a disease in
a different organism. The users of DGM have to provide the “source” disease name and
an organism, and a second organism against which the gene sequence search will be
executed. Deep Aligner portlet allows researchers to search for a multitude of short
gene sequences in a given organism. The users can upload multiple sequences in a
compressed file (.rar, .zip or .tar.gz), the portlet searches for all of them in the selected
database.

2.11.3. Implemented scalability actions

Our aim was achieving high performance for our two portlets. The portlets execute a
number of different applications, but the most computationally challenging is mpiBlast
which takes most of the execution time so we focused our benchmarks on that.
Amongst other things we have tried

 running the program under different implementations of MPI
 executing on different hardware environments
 experimenting with different compilers and compiler options
 experimenting with mpiBlast options like database fragmenting, enabling parallel

write etc.

2.11.4. Benchmark dataset

The blast database size was 5.1 GB, and the input sequence size was 29.13 kB. Each
measurement was executed 10 times, the average of the 10 executions was taken as
the final result

2.11.5. Hardware platforms

A number of hardware platforms have been used for the testing of the applications. The
portlet we have developed is connected to all these different HPC infrastructures and it

D8.4 - Assessment of interoperability and scalability solutions Page 66 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

is the job of the middleware to choose the appropriate for each execution. For our
benchmarks we specified the infrastructure the application was supposed to use.

The benchmarks were executed on five different HPC infrastructures:
 Debrecen

o Intel Xeon X5680 (Westmere EP) 6 core nodes, SGI Altix ICE8400EX
o 1536 CPU cores
o 6 TB memory
o 0.5 PB storage
o Total capacity: ~18 TFlops

 Budapest (NIIF)
o fat-node cluster using CP4000BL blade
o AMD Opteron 6174 CPUs, 12 cores (Magny Cours)
o ~700 cores
o Total Capacity ~5 TFlops

 Pecs
o SGI UltraViolet 1000 - SMP (ccNUMA)
o CPU: Intel Xeon X7542 (Nehalem EX) - 6 cores
o 1152 cores
o 6 TB memory
o 0.5 PB memory
o Total capacity: ~10 TFlops

 Szeged
o fat-node cluster using CP4000BL blade
o AMD Opteron 6174 CPUs, 12 cores (Magny Cours)
o 2112 cores
o 5.6 TB memory
o 0.25 PB storage
o Total Capacity ~14 TFlops

 Bulgaria
o Blue Gene/P with PowerPC CPUs
o 2048 PowerPC 450 based compute nodes
o 8192 cores
o 4 TB memory

2.11.6. Software platforms

The applications were tested using multiple software stack
 Different MPI implementations

o openmpi_gcc-1.4.3
o openmpi_open64-1.6
o mpt-2.04
o openmpi-1.4.2
o openmpi-1.3.2

 Different compilers
o opencc
o icc
o openmpi-gcc

D8.4 - Assessment of interoperability and scalability solutions Page 67 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Each of the different hardware platforms have multiple MPI environments. We have
tested our applications with multiple versions. There usually is one specific preferred at
each of the HPC centers which we preferred using.

2.11.7. Execution times

The following graphs show the results of the executions. The execution times varied a
little depending on the HPC centre used, but they were more or less stable so we only
include the results from the Budapest server. The following graphs show the result of
multiple executions of mpiBlast on the same database with the same input sequence on
the same computer. The only difference being the number of CPU cores allocated to the
MPI job1. Figure 24 shows the execution times measured by mpiBlast. If executed on
just one CPU it takes 3376 seconds for the job to finish (about 53 minutes). As we can
see the applications scales well, the execution times drop when we add more and more
CPUs.

Figure 24 - Execution times measured by mpiBlast in seconds

Figure 25 shows the speedup in percentage compared to the original measurement on
one CPU core. The results show that the application loses momentum around 32 cores
but the performance increases until around 128 cores. Figure 26 shows the same
results but from a different angle: that of the efficiency – the speedup / number of
cores.

1 The actual number of CPU cores was two more than what is shown in the graphs – 2
additional cores are used by mpiBlast for execution maintenance and management

D8.4 - Assessment of interoperability and scalability solutions Page 68 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 25 - mpiBlast speedup using multiple CPU cores compared to running it
on just one CPU core

Ideally in a perfectly scaling application the numbers should be around one. As we can
see from the graph the efficiency is quite high (>75%) until the number of cores
reaches 128 where it starts to drop.

Figure 26 - Efficiency of using multiple CPU cores

2.11.8. Further optimization

The first task when using mpiBlast is to split the blast database into multiple
fragments. According to previous research, the number of database fragments have a
direct impact on the performance of the application. Finding an optimal number was
essential, so our database was split into different sizes. Figure 27 shows the measured
execution times. The measurements were executed on 64 cores.

D8.4 - Assessment of interoperability and scalability solutions Page 69 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 27 - Execution times in seconds using different number of Database
Fragments

As it is apparent from the graph, the application performs best when the number of DB
segments are integer multiples of the number of CPU cores. The reason is
straightforward: this is the only way an even data distribution can be achieved amongst
the cores.

2.11.9. Memory Usage

1 2 4 8 16 32 48 64 96 128

1,257 2,112 3,345 4,131 5,434 6,012 4,153 8,745 9,897 12,465

Table 15 - Memory usage while executing the application. The results come
from the maxvmem parameter of qacct

As we can see the memory consumption (measured by qacct) increases as the number
of cores is increased.

2.11.10. Profiling

The two applications we have created share some of the code base which results in a
similar behavior. Both applications consist of three jobs in a WS-PGRADE workflow with
job 1 being the preprocessor, job 2 doing the calculations and job 3 collecting the
results and providing it to the user. The current implementation for the preprocessing is
serial, we have investigated parallelizing but according to our profiling approximately
0.02 % of the total execution time is spent on Job 1 in DeepAligner, so yields no real
performance gain but can cause problems so we voted against it. Job3 is 0.01% - most
of the work is done in Job2. Job2 consists mainly of mpiBlast, the profiling shows the
following results.

Job1 Job2 Job3

0,02% 99,97% 0,01%

Table 16 - Execution time ratio of the jobs in the whole DGM and DA portlets

D8.4 - Assessment of interoperability and scalability solutions Page 70 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Init BLAST Write Other

1,79% 97,18% 0,19% 0,84%

Table 17 - Execution time ratio inside Job2

2.11.11. Communication

mpiBlast uses a pre-segmented database and each node have their own part where it
searches for the input sequence so the communication overhead is very small.

2.11.12. I/O

1 2 4 8 16 32 48 64 96 128

0,001 0,001 0,002 0,003 0,004 0,011 0,016 0,019 0,027 0,029

Table 18 - I/O as measured using the IO parameter of qacct

As we can see on the previous table the I/O use increases as we increase the number
of CPU cores in the job.

2.11.13. Analysis

From our tests, we conclude that our application scales reasonably well up until about
128 cores. When the appropriate MPI implementation is used on the HPC infrastructure
the performance figures are quite similar – the scalability results are within the same
region as expected. The number of database fragments play a significant role in the
whole application and the best result can be obtained when that number is equal to or
is an integer multiple of the number of cores. We have also noted that because of the
high utilization of the supercomputing centers real life performance – wall clock time
measured from the initialization of the job until the results are provided – could be
better when using a smaller number of cores because small jobs tend to get scheduled
easier and earlier.

D8.4 - Assessment of interoperability and scalability solutions Page 71 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.12. FMD-PA

2.12.1. Summary

Code author(s): Manthos G. Papadopoulos, Heribert Reis

Application areas: Computational Chemistry

Language: Fortran Estimated lines of code: 10000

URL: http://wiki.hp-see.eu/index.php/FMD-PA

2.12.2. Implemented scalability actions

Figure 28 - HPCG cluster, FMD-PA

Figure 29 - Blue Gene cluster, FMD-PA

The above diagrams depict the efficiency of the two clusters as the number of
processors increases. The efficiency is measured in nanoseconds of a Molecular
Dynamics (MD) simulation per day using GROMACS package in double precision. The
system under study composes of water molecules described by the Simple Point Charge

D8.4 - Assessment of interoperability and scalability solutions Page 72 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

(SPC) model. As far as Blue Gene cluster, it is recommended to run with many
processors (>128).

2.12.3. Benchmark dataset

A series of Molecular Dynamics (MD) simulations were conducted in order to test the
efficiency of the two clusters. As a model system we chose an aqueous phase of 17131
molecules described by the well-known Simple Point Charge model. Besides, the
treatment of electrostatics was done through the Particle Mesh Ewald method which is
regarded quite time-consuming. The duration of all MD simulations was 20ns producing
output files of approximately 3GB while all runs were ended successfully within 20h.

2.12.4. Hardware platforms

HPCG cluster and Blue Gene cluster.

2.12.5. Execution times

From one hour to several days.

2.12.6. Memory Usage

Several GBs (e.g. for a Gaussian job needs 4 GBs).

2.12.7. Analysis

The team tried different architectures: BlueGene, HPCG cluster (it scales on both)

D8.4 - Assessment of interoperability and scalability solutions Page 73 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.13. CompChem

2.13.1. Summary

Code author(s): NAMD 2.9; http://www.ks.uiuc.edu/Research/namd/

Application areas: Computational Chemistry

Language: Charm++ Estimated lines of code: -

URL: http://wiki.hp-see.eu/index.php/CompChem

2.13.2. Implemented scalability actions

 CompChem/RS application is oriented toward usage of existing source codes
installed on our home cluster PARADOX/IPB and HPCG/BG. Programs for
molecular dynamics simulations, Ab initio/DFT/Semiempirical QM calculation,
docking calculations and cheminformatic tools were installed, covering diverse
need of the users, which are mainly directed to design and development of novel
molecules with potential therapeutic value.

 Some programs installed on PARDOX were offered by developers exclusively as
executables (for example OpenEye applications, see
http://www.eyesopen.com/), with their own MPI implementation for multi-CPU
usage.

 Part of other programs are precompiled by developers, for example ORCA and
NAMD, and executable most suitable for particular architecture can be found on
the developers download area.

 The majority of CPU times used so far by CompChem application were spent by
NAMD.

 In the next lines we intent to respond to request of referees – to find better
architecture for our application, because of obvious poor scalability of the NAMD
as the major application on PARADOX/IPB, which failed to provide good
scalability with NAMD for bigger systems (usually medium sized proteins with
ligands, counterions and explicit solvent – size in total ~ 90 000 atoms in
majority of simulations). Problem of scalability is clearly due to the architecture
of our home cluster – with slow interconnection between the nodes.

 In order to overcome overestimation of achieved speed/scalability, common for
using predefined benchmarks, we challenged NAMD 2.9 scalability by benchmark
made by the system taken from our every-day practice. The care was taken that
whole system be comparable with NAMD native benchmark
(http://www.ks.uiuc.edu/Research/namd/performance.html), but we add more
demanding criteria.

 The scalability of NAMD 2.9 is examined on two clusters PARDOX/IPB and
HPCG/BG.

 Very good scalability was obtained on HPCG/BG clusters, as is shown in following
lines.

D8.4 - Assessment of interoperability and scalability solutions Page 74 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.13.3. Benchmark dataset

As we mentioned above, our benchmark include the system that comprise all elements
as native NAMD benchmark (size of the system, frequency of electrostatic evaluations,
periodic boundary conditions). Our system comprises of protein, ligand, counter-ions
and explicit solvent, and larger cut-offs; requesting more, and more demanding non-
bonded and electrostatic interactions evaluation comparing to native NAMD benchmark.

Additionally, in our scalability results we include the output trajectory writing – time
demanding, but crucial for every MD simulations. Also we applied external biasing
forces, reference and constraints. All listed usually are challenge for the both speed of
calculation and the scalability (for any MD simulation).

In this scalability study we duplicated number of paches in one dimension to use
maximum of 64 or of 128 CPU’s applied (same for all calculations).

System is minimized during 30 000 steps, than heated to 310 K during 10 000 steps.
The 5 ns of unconstrained MD simulation retain ligand close to initial position; this
means that system is very stable. Few pulling calculations (2 ns) give reliable results.

Benchmark was as follows: CHARMM FF, ~ 87 000 atoms, 14 Å cutoff, PME, PBC, SMD
(reference file, constraints applied to stabilize system, pulling force applied), DCD
(trajectory) writing every 1000 steps / 50 000 steps (1 ns = 1000000 steps)

2.13.4. Hardware platforms

PARADOX/IPB and HPCG/BG clusters

The following distinct hardware platforms were used:

 the PARDOX/IPB cluster with Intel 2 x quad core Xeon E5345 @ 2.33 GHz

 the HPCG/BG cluster with Intel Xeon X5560 CPU @2.8 GHz

2.13.5. Execution times

Scalability of the NAMD 2.9 - 86_64-ibverbs (installed on both clusters and used for
scalability study) were shown in Table 19 and Table 20, and Figure 30 and Figure 31.

Table 19 - Scalability of NAMD 2.9 on PARADOX/IPB

CPU's Nodes Wall Clock
(s) CPUTime(s) Memory

(MB)
Speed-up
Wall Clock

Speed-up
CPU Time

8 1 7921.667 7620.740 86.401 - -

16 2 5302.639 4177.521 69.138 1.494 1.824

32 4 3410.354 2268.378 62.297 2.323 3.360

64 8 2729.427 1377.746 57.380 2.902 5.531

128 16 2700.188 1399.444 58.531 2.934 5.446

D8.4 - Assessment of interoperability and scalability solutions Page 75 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 30 - Scalability of the NAMD 2.9, CPU’s / Nodes

CPU 's Nodes Wall Clock

(s)
CPU Time

(s)
Memory

(Mb)
Speed-up Wall

Clock
Speed-up CPU

Time

8 1 5526.474 5513.867 210.199 - -

16 1 4702.783 4443.861 189.453 1.175 1.241

32 2 2173.008 2166.701 187.320 2.543 2.545

64 4 1289.415 1281.039 199.539 4.286 4.276

128 8 853.092 849.037 228.988 6.479 6.488

Table 20 - Scalability of NAMD 2.9 on HPCG/BG

Figure 31 - Scalability of NAMD 2.9, CPU’s

D8.4 - Assessment of interoperability and scalability solutions Page 76 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

2.13.6. Memory Usage

NAMD always use low memory resources (except if large steps in trajectory writing is
requested – which is very uncommon), but parallel efficiency is an issue.

2.13.7. Profiling

During NAMD MD simulations, after start-up phase which is usually exceptionally fast,
most CPU time were used on evaluation inter-particle interactions, as well as trajectory
file writing. Please be aware that we used (real) all-atom force field (means many more
such evaluations than with united atom force field used).

2.13.8. Communication

The drastic difference in time needed for communication, comparing HPCG/BG and
PARADOX/IPB can be seen from Table 19 and Table 20 (graphical representations on Figure
30 and Figure 31); and this is main and well-known issue of scalability of NAMD on
PARADOX.

2.13.9. I/O

All pre- and post-processing are typically done on user terminals, therefore those
phases were not included in our scalability study, different of some other application
reports in this document.

It should be mentioned that commonly NAMD save two backup copies of all files needed
for restarting the simulation (if not otherwise requested) and we used standard
configuration in this part. Size of output files heavily depends of the time of simulation
requested, trajectory frequency and external procedures applied. We applied external
procedure (steered molecular dynamics) in our benchmark set, which did not slow-
down NAMD on HPCG/BG.

D8.4 - Assessment of interoperability and scalability solutions Page 77 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

3. Software harmonization

3.1. Harmonization status

 N
IIF

 S
ze

ge
d,

HU

N

N
IIF

 P
éc

s,

HU
N

N

IIF

De
br

ec
en

,
HU

N

BG
,B

G

HP
CG

,B
G

IF
IN

_B
C,

 R
O

IF
IN

_B
io

, R
O

In
fr

aG
RI

D,

RO

IS
S_

GP
U

, R
O

N
CI

T-
Cl

us
te

r,
RO

PA
RA

DO
X,

RS

 Metric
value

Atlas 3,83 3,83 3,83 3,911 3,622

BLAS 3,037 3,22 3,22
3,03

7 3,037 3,037 2,988
BLACS 1,1 1,1 1,1 1,1 3,500
charm
++ 6,21 6,21 6 4,280

CPMD
3,15

1 3,151 3,132 4,025
FFTW 3,22 3,12 3,12 3,12 2,15 3,11 3,22 3,12 3,245
GotoB
LAS 2 1,26 5,240
GROM
ACS 4,53 4,54 4,54 4,53 3,520
LAPAC
K 3 3,22 3,22 3,2 3,037 3,11 3,037 2,574
NAMD 2,7 2,7 2,6 2,8 3,700
Open
MPI 1,42 1,32 1,32 1,53 1,25 3,428

ROOT
5,
26 5,28 4,520

ScaLA
PACK 1,9 1,8 1,8 4,133
SPRN
G 2 2 4 6,667
VMD 1,9 1,9 1,86 4,053

 Sum:
59,49

5
Table 21 shows the most typical libraries that are needed for the HP-SEE applications to
be ported from one site to other. This table was defined in the D8.2 deliverable [7]. It
shows the actual software stack of the HPC sites when D8.2 has been written more
than a year ago. We created an equation, which help to analyze the harmonization
status between the sites. If several versions of the same software are installed on the
same site, then only the higher version number is used.

The metric is defined as follows:

D8.4 - Assessment of interoperability and scalability solutions Page 78 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Equation 3 – Harmonization metric

The result of the formula is the distance value for a particular library. The target is to
reduce it. Index “i” denotes the count of resource centers that have installed this library
and index “k” represents those who have not. Value 0.5 is the weight of all not-installed
software. Value of Xavg represents the average distance of the installed library versions.
If the metric value is reduced, then the concerned library versions are coming closer,
and thus the software components are considered to be more harmonized.

 N
IIF

 S
ze

ge
d,

HU

N

N
IIF

 P
éc

s,

HU
N

N

IIF

De
br

ec
en

,
HU

N

BG
,B

G

HP
CG

,B
G

IF
IN

_B
C,

 R
O

IF
IN

_B
io

, R
O

In
fr

aG
RI

D,

RO

IS
S_

GP
U

, R
O

N
CI

T-
Cl

us
te

r,
RO

PA
RA

DO
X,

RS

 Metric
value

Atlas 3,83 3,83 3,83 3,911 3,622

BLAS 3,037 3,22 3,22
3,03

7 3,037 3,037 2,988
BLACS 1,1 1,1 1,1 1,1 3,500
charm
++ 6,21 6,21 6 4,280

CPMD
3,15

1 3,151 3,132 4,025
FFTW 3,22 3,12 3,12 3,12 2,15 3,11 3,22 3,12 3,245
GotoB
LAS 2 1,26 5,240
GROM
ACS 4,53 4,54 4,54 4,53 3,520
LAPAC
K 3 3,22 3,22 3,2 3,037 3,11 3,037 2,574
NAMD 2,7 2,7 2,6 2,8 3,700
Open
MPI 1,42 1,32 1,32 1,53 1,25 3,428

ROOT
5,
26 5,28 4,520

ScaLA
PACK 1,9 1,8 1,8 4,133
SPRN
G 2 2 4 6,667
VMD 1,9 1,9 1,86 4,053

 Sum:
59,49

5

Table 21 – Software stack status, input: D8.2

N
IIF

 S
ze

ge
d,

 H
UN

N
IIF

 P
éc

s,
 H

UN

N
IIF

 D
eb

re
ce

n,
 H

UN

BG
,B

G

HP
CG

,B
G

IF
IN

_B
C,

 R
O

IF
IN

_B
io

, R
O

In
fr

aG
RI

D,
 R

O

IS
S_

GP
U,

 R
O

N
CI

T-
Cl

us
te

r,
RO

PA
RA

DO
X,

 R
S

Metric
value

Atlas 3,83 3,83 3,83 3,83 3,8 3,8 3,911 3,8 1,673

BLAS 3,037 3,22 3,22 3,037 3,037 3,037 3,037 3,037 3,037 3,21 1,255

D8.4 - Assessment of interoperability and scalability solutions Page 79 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

BLACS 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 0,500

charm++ 6,21 5,000

CPMD 3,151 3,151 3,132 4,025

FFTW 3,22 3,12 3,12 3,12 3,12 2,15 3,11 3,33 3,31 3,12 2,344

GotoBLAS 1,13 1,13 1,13 2 4,805

GROMACS 4,53 4,54 4,54 4,54 4,53 4,55 2,533

LAPACK 3 3,22 3,22 3,2 3,037 3,42 3,42 3,42 3,31 3,037 1,813

NAMD 2,9 2,9 2,9 2,7 2,7 2,9 3,033

OpenMPI 1,43 1,32 1,42 1,43 1,43 1,43 1,54 1,6 1,25 1,587

ROOT 5,34 5,34 5,34 5,26 3,620

ScaLAPACK 1,75 1,75 1,75 1,9 1,8 2,02 2,02 2,02 2,02 1,8 1,630

SPRNG 2 2 4 6,667

VMD 1,9 1,9 1,9 1,86 1,9 3,064

 Sum: 43,549

 Table 22 – Software stack status, 22th February 2013

The harmonization level has been improved because the metric value has been
decreased from 59,495 to 43,549.

3.2. HP-SEE software stack

WP8 has defined a metric within deliverable D8.2 which describes the harmonisation
status of the HPC centres. The metric values have been calculated again in this
document. The result has been improved since missing software components have been
installed in the centres.

WP8 has defined two software stacks, which helped to improve the harmonisation level
of the sites based on the needs of the regional HPC user communities and also taking
into account the relevant work that has been done in the pan European HPC
infrastructure PRACE:

 Minimal software stack

 Recommended software stack

The minimal software stack should be installed on all sites (with some exceptions in
case of non suitability) while the recommended software stack contains optional
software components that improve the interoperability of the infrastructure if used.

3.2.1. Minimal software stack (mandatory for all HPC centre)

Shells:

 bash

 tcsh

D8.4 - Assessment of interoperability and scalability solutions Page 80 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Compilers:

 C

 C++

 Fortran

 Java

Comments:

o GNU Compilers should be available in all sites (unless specific reasons
prevent it)

o Vendor specific compilers where appropriate (Intel, IBM, PGI, AMD
compiler)

o Java of any version or vendor (if architecture justifies it)

Libraries/Communication

 MPI (At least one of MPICH1, MPICH2, OpenMPI, MVAPICH1, MVAPICH2),
OpenMPI is preferred if possible.

 OpenMP

 CUDA (For sites with NVIDIA GPUs)

Libraries/Numerical and I/O:

 BLACS

 BLAS

 FFTW

 ScaLAPACK

 MPIBLAST

 LAPACK

Tools:

 gprof or any other profiler

 gdb or any other debugger

 Perl

 Python

 Tcl

Grid Middleware

 We are recommending EMI middleware (ARC, UNICORE or gLite)

D8.4 - Assessment of interoperability and scalability solutions Page 81 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

3.2.2. Recommended software stack

Minimal software stack + optional applications and libraries

Libraries:
 SPRNG

 Atlas

 charm++

 GotoBLAS

Applications:

 Octave

 GROMACS

 AMBER

 GAMESS

 NAMD

 VMD

 CPMD

 ROOT

Table 23 notations:

 IP: Installation is in progress

 N/A: It is not installed (reason: HPC centre policy does not allow to install it or it
is not available for that platform)

 *: Installed

D8.4 - Assessment of interoperability and scalability solutions Page 82 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Table 23 – Minimal and recommended software stack status, 22th February 2013

N

IIF
 S

ze
ge

d,
 H

U
N

N
IIF

 P
éc

s,
 H

U
N

N
IIF

 D
eb

re
ce

n,

HU
N

N
IIF

 B
ud

ap
es

t,
HU

N

BG
 B

lu
e

G
en

e/
P,

BG

HP
CG

,B
G

IF
IN

_B
C,

 R
O

IF
IN

_B
io

, R
O

In
fr

aG
RI

D,
 R

O

U
VT

 B
lu

eg
en

e,

RO

N
CI

T-
Cl

us
te

r,
RO

PA
RA

DO
X,

 R
S

FI
N

KI
 S

C,

M
ac

ed
on

ia

Minimal software stack
bash * * * * * * * * * * * * *
tcsh * * * * * * * * N/A N/A * * N/A

GNU
compiler (C,
C++, Fortran)

* * * * * * * * * N/A * * *

Java
compiler * * * * * * * * N/A N/A * * *

Vendor
compiler (C,
C++, Fortran)

* * * * * * N/A N/A * * * * N/A

OpenMP * * * * * * * * * * * * *
MPI * * * * * * * * * * * * *

CUDA * N/A N/A N/A N/A * N/A N/A N/A N/A N/A N/A N/A
BLACS * * * * * * * * * * * * *
BLAS * * * * * * * * * * * * *
FFTW * * * * * * * * * * * * *

Scalapack * * * * * * * * * * * * *
MPIBLAST * * * * N/A N/A * * * * * * *

LAPACK * * * * * * * * * * * * *
Profiler * * * * * * * * * * * * *

Debugger * * * * * * * * * * * * *
Perl * * * * * * * * * * * * *

Python * * * * * * * * * * * * *
Tcl * * * * * * * * N/A N/A * * *

Middleware * * * * * * IP IP * N/A N/A * *
Recommended software stack

SPRNG * *
Atlas * * * * * * * * * *

charm++ *
GotoBLAS * * * * *

Octave * * * * * *
GROMACS * * * * * * * *

AMBER * *
GAMESS * * *
NAMD * * * * * * * *
VMD * * * * * *
ROOT * * * *
CPMD * * * *

D8.4 - Assessment of interoperability and scalability solutions Page 83 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

4. Interoperability

4.1. Resource management system and user
authentication

4.1.1. Resource management system

The HP-SEE Resource Management System has two main goals:

 Providing a centralized way for requesting access to the HP-SEE infrastructure

and requesting computing resources

 Providing an easy way to monitor the resources used by the project

The system is responsible for managing both requests for access to the infrastructure

and requests for local access to the HPC centers. It also provides an easy way for

monitoring resource requests and remaining resources. New HP-SEE users can register

here: https://portal.ipp.acad.bg:8443/hpseeportal/

Requirements for system usage:

 X509 certificate

 Browser and Internet

4.1.1.1 Registration of new users

The first step in using the Resource management system is to register and submit a

request for account creation to the HP-SEE Application Review Committee.

Figure 32 - Registration

D8.4 - Assessment of interoperability and scalability solutions Page 84 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

The user can browse the available HPC centres while waiting for approval from the HP-

SEE ARC. If the user request has been approved by the HP-SEE ARC then he will be

notified by e-mail.
User need to do these steps to request HPC computing resources:

 Choose an HPC Center

 Download it's request form

 Fill in the requested information

 Scan a signed copy of it

 Upload it via the Resource Management System

 Fill in the upload form

 Upload it

Figure 33 – HPC Centres

The Resource management system provides information about requests as well as

statistics for the used CPU time and job count on different HPC centers.

Figure 34 – Statistics for the used CPU time

D8.4 - Assessment of interoperability and scalability solutions Page 85 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

4.1.2. LDAP

The authentication and authorization of supercomputer users is significantly different

from similar solutions applied in grids. While the former often requires local

personalized user credentials as well as local user access to at least the HPC font-end

nodes, the later uses temporary local credentials assigned to individual user jobs rather

than to individual users. Furthermore in the grid case the users are authenticated and

authorized by the grid middleware (i.e. in the application level), rather than the lower,

say operating system level, software layers.

When creating a structured HPC network an appropriate convergence between the two

are needed combining the advantages of both. The classic way of having OS-level user

credentials on HPC facilities is to use centralized, yet fail-safe LDAP databases to store

user and group parameters and expose them on all HPC elements: compute, front-end

and storage elements uniformly. Even though it works quite well in any local

configuration, in the everyday practice it is difficult to share multiple LDAP servers

administered over multiple organizations. One fallback strategy might be to build up a

directory service, a hierarchically built LDAP database that has multiple subtrees and

each subtree belongs to different organizations.

Figure 35 shows the LDAP topology of HP-SEE. There is a central LDAP, which content

each HPC center and user. The HPC centres also have local LDAP server. The data

synchronization between the central LDAP and local LDAP is done by a script. This script

do the mapping, it is essential for example if the uidNumber need to be changed. The

users are authenticated from this local LDAP service. It is important that the userid

need to be extended with a “see-“ prefix because it must be unique in each HPC

center’s LDAP.

Figure 35 – LDAP topology

D8.4 - Assessment of interoperability and scalability solutions Page 86 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Central LDAP server has been installed on this machine: see-ldap.grid.niif.hu. It can be

accessed over LDAPS. The server’s certificate issued by TERENA CA.

Authorization to a HPC centre:

dn: cn=fep.grid.pub.ro,ou=hpc-groups,o=romania,dc=hp-see,dc=eu
objectClass: groupOfUniqueNames
cn: fep.grid.pub.ro
uniqueMember: uid=see-martin,ou=users,dc=hp-see,dc=eu
uniqueMember: uid=see-joe,ou=users,dc=hp-see,dc=eu

If we would like to authorize a user then we need to add the user’s DN to the required

HPC centre’s tree.

4.2. HP-SEE common environment

The Environment Modules package [11] provides for the dynamic modification of a
user's environment via modulefiles. Each modulefile contains the information needed to
configure the shell for an application. Once the Modules package is initialized, the
environment can be modified on a per-module basis using the module command which
interprets modulefiles. Typically modulefiles instruct the module command to alter or
set shell environment variables such as PATH, MANPATH, etc. modulefiles may be
shared by many users on a system and users may have their own collection to
supplement or replace the shared modulefiles.

HP-SEE common environment (HCE) has been created for the HP-SEE centres which is
using this module framework. The HCE can be downloaded from here:

https://github.com/HP-SEE/hce

These modules have been created for the HP-SEE minimal software stack and
recommended software stack components which has been installed on the HP-SEE
centres. Figure 36 shows an example for HCE usage.

Figure 36 – HP-SEE module system

D8.4 - Assessment of interoperability and scalability solutions Page 87 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

4.3. Software monitoring with Nagios

The installed softwares are monitored via Nagios, which is a free available, open source
monitoring system. This is perfectly suitable for this purpose because we can easily
write a test in any kind of script languages (Perl, shell script, Python, etc.). The return
value of the test script will be used to check the test result. We created such tests for
the minimal and recommended software stacks. These test scripts can be downloaded
from here:

https://github.com/HP-SEE/hce/tree/master/nagios

We are recommending the Nagios Remote Plugin Executor (NRPE) [12] because this
addon is designed to allow you to execute Nagios plugins on remote Linux/Unix
machines. The main reason for doing this is to allow Nagios to monitor "local" resources
(like CPU load, memory usage, software version, etc.) on remote machines. Since these
public resources are not usually exposed to external machines, an agent like NRPE
must be installed on the remote Linux/Unix machines.

Figure 37 - Nagios Remote Plugin Executor

HP-SEE NRPE command names are described in this file:

https://github.com/HP-SEE/hce/blob/master/nagios/etc/nagios.cfg

Figure 38 - Software monitoring with Nagios

Here is the monitoring link which can be opened in the browser:

D8.4 - Assessment of interoperability and scalability solutions Page 88 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

https://hpseemon.ipb.ac.rs/nagios/cgi-bin/status.cgi?host=all

4.4. Usage of gUSE portal

Bioinformatics portal developed in HP-SEE project allows using 2 scientific applications,
an application for Deep sequencing for short fragment alignment (called DeepAligner)
and application called In-silico Disease Gene Mapper. Both are represented by a
workflow structure shown in Figure 1

4.4.1. Availability

4.4.1.1 DiseaseGeneMapper

http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-
6.0.5/en_GB/web/guest/diseasegenemapper

4.4.1.2 Deep Aligner

http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-
6.0.5/en_GB/web/guest/deepaligner

4.4.2. Requirements

There are two requirements the users have to comply in order to use the DGM and DA
portlets

 appropriate group membership on the ls-hpsee portal – to require the
membership, please contact the portal administrator: balasko at sztaki dot hu

 valid, downloaded and associated certificate for the NIIF supercomputers. To
apply for such a certificate please contact the NIIF administrator: roczei at niif
dot hu

4.4.3. Installation (for portal administrators)

 Import the workflow, export it as an application

 Install the portlet (for details on how to install the portlet, please refer to the
ASM User Manual).

The nodes represent jobs are preconfigured to be submitted to computational resources
of ARC middleware. The real computational resource on where the job will be executed
is selected by ARC's client-side brokering mechanism. The concrete job submission and
managing its life cycle fall within the core system's cognizance. This part of the life-
cycle is being modified by allowing the users to specify their requirements for the
computational resource by modifying the JSDL description of a job. Then a planned
development aims to be able to change the strategy of the brokering according to the
claims of the portal.

D8.4 - Assessment of interoperability and scalability solutions Page 89 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

One interface was developed per each application in order to import, parameterize and
execute them while the details of the configuration and the execution are totally hidden
from the users.

These portlets are based on Application Specific Module(ASM) provided by core WS-
PGRADE system which hides all internal communication among gUSE components and
offers an easy-to-use Java API that enables the communities to develop a clear and
focused interface exploiting the features of the core portal.

Users of WS-PGRADE define their applications as workflows. They can share their
applications among each other by exporting them to the repository. Following this way,
other users can import such applications and execute or modify them in their user
space. Concept of ASM that solves problem of customization is based on this scenario.
In this case two different user roles can be defined: Application Developer, who created
and shared the application, and the End Users, who import and execute it. Or
analogously, Application Developers are administrators, or scientists with developer
skills; and the End Users are those, who just use their product.

Using this solution development of science gateways technically means development of
web applications that produce a transparent interface, handle the interaction coming
from the users, and, according to them, call the internal components. This calling
mechanism is simplified by ASM as it hides complex algorithms and web-service calls
and provides these functionalities as simple Java methods covering the whole life-cycle
of the workflow in aspect of End Users. ASM contains method to get the list of
Application Developers, the applications shared by a particular Developer, and to import
a particular workflow. To guarantee that the workflow will do the same that the
Developer wanted originally, End Users have restricted possibilities to manipulate the
workflow. Especially they cannot modify the workflow structure by adding or removing
a node, or they cannot replace the program placed in a node, but they can upload and
attach a new input file, set or modify command line arguments, etc.

Finally End Users can manage the workflows; they can submit them to a distributed
resource, check the execution, download their outputs or delete them. gUSE can be
extended with an interface that hides the complexity of the inner abstraction levels,
and inner callings of different core services. Without this component, one or more
difficult web-service callings should be constructed each time when a customized
portlet should get or pass information from/to the portal. In order to avoid this
complexity Application Specific Module(ASM) API covers all of these internal information
accesses by a simple call of well-parameterized JAVA methods.

Figure 39 shows the main concept of a science gateway based on ASM, where ASM-
based user interface represents the interface developed especially for an workflow
constructed via the traditional WS-PGRADE interface.

D8.4 - Assessment of interoperability and scalability solutions Page 90 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 39 - Concept of ASM

4.4.4. Using the portlets

The first step of using the applications is to download a valid certificate and associate it
to the NIIF supercomputers

Figure 40 - Upload certificate to use the portlets

D8.4 - Assessment of interoperability and scalability solutions Page 91 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 41 - DiseaseGeneMapper main window

Figure 42 - DeepAligner main window

4.4.5. Creating a new DiseaseGeneMapper query

The first thing that has to be done is clicking on the button Create new
DiseaseGeneMapper Query. It will import the latest version of the DiseaseGeneMapper
workflow (see Appendix, Naming convention). A job is created from the workflow, and it
shows up in the main table.

4.4.6. DiseaseGeneMapper job lifecycle

 INIT: first state – no parameters are set
 RUNNING: parameters are set and the job has been submitted
 FINISHED: job finished running – results can be downloaded
 ERROR: job finished running – there has been an error

At first the job will be in the INIT state. It means that the workflow has been imported,
but the parameters have not been set and the job has not been started yet. At this
point the user has to press the Set Parameters button, and specify all the parameters.
All the fields are filled out with example values.

4.4.7. Submitting jobs

Clicking on the submit button submits the job to the ARC middleware which forwards it
to the NIIF supercomputers.

D8.4 - Assessment of interoperability and scalability solutions Page 92 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

Figure 43 - Executing DeepAligner query

When the job is submitted, the Status becomes RUNNING. The running time depends
greatly on the number of input sequences, the size of the blast database and the load
of the supercomputer the job is executed on. If the supercomputers are occupied it is
not uncommon for the jobs to be on the queue for several hours. Once the jobs are
executed they should finish in a matter of minutes.

After the jobs are completed, the status becomes either FINISHED or ERROR. FINISHED
means that the workflow ran without any problems – but it does not necessarily mean
that the results are calculated as expected. The program handles unexpected situations
(like blast database missing, unexpected input file format etc.) quite well, so even if
there was an error, the status will be FINISHED, and the error message will be inside
the resulting file. If the status is ERROR, it usually means that there was some problem
outside the scope of the workflow (like mpiBlast running out of memory or a
synchronization problem between the nodes). In rare cases it is even possible that even
though the status is ERROR, it did not affect the correct results.

4.4.8. Downloading results

Figure 44 - Downloading results from the applications

When the job finished running (the status is either FINISHED or ERROR), the results
can be downloaded by clicking on the Download button. The resulting file is a tar.gz
called blastOutput.tar.gz, and it holds either the blast results for all the input
sequences or the error message.

D8.4 - Assessment of interoperability and scalability solutions Page 93 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

4.4.9. Parameters

Figure 45 - Setting the parameters for Disease Gene Mapper

 NCBI database: the name of the NCBI database from which the sequences are
going to be downloaded.

 Source animal: The downloaded sequences are filtered, only the ones belonging
to the given source animal are stored and processed

 Destination animal: Database for the blast search
 Disease name: the name of the disease that the user is looking for in the NCBI

database
 E value: Expectation value for the BLAST search. The larger the number the

more inaccurate the results are
 Blast algorithm: the algorithm blast uses
 Number of sequences to download: the NCBI database usually holds lots of

sequences associated to a disease. The number the user sets here will tell the
program how many of these sequences to process. There is no maximum
number here, the program will automatically adjust it to number of NCBI results.

4.4.10. DeepAligner

For using the portlet, see DiseaseGeneMapper section.

D8.4 - Assessment of interoperability and scalability solutions Page 94 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

4.4.10.1 Parameters

Figure 46 - Setting the parameters for DeepAligner

There are only three parameters for the DeepAligner portlet
 Compressed file: the most important parameter, this file holds the sequences

that are to be searched in against the selected database. The compressed file
can either be a tar.gz, zip or rar. The sequences inside the compressed file are
store as one sequence per file. The names of the sequence files can be anything,
but they will be renamed to output_x, where x is an integer starting from 0

 Blast database: the name of the database against which the sequences will be
BLASTed.
The databases currently supported are

o est_human
o drosoph.nt
o est_mouse
o est_others
o env_nt
o gss
o htgs
o human_genomic
o igSeqNt
o nt
o other_genomic
o patnt
o sts

 E value: Expectation value for the BLAST search. The larger the number the
more inaccurate the results are

4.4.11. Appendix

Special considerations for the workflows

Naming convention:

Both Diesase Gene Mapper and Deep Aligner portals require a special naming
convention when importing workflows. DGM loads workflows that are called
DiseaseGeneMapper_vX, Deep Aligner expects workflows that are called
DeepAligner_vX. The X in both cases mean an integer, which is the version number of

D8.4 - Assessment of interoperability and scalability solutions Page 95 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

the workflow. The portlets open the version with the highest version number. The
names are not case sensitive.

Port values:

Both portlets assign values to the ports using the API call ASMService.setInputText.
This call only has an effect if the given port in the workflow’s configuration is set to be
a value, but the value field is left empty. If a value is specified for the port,
setInputText will not overwrite it.

D8.4 - Assessment of interoperability and scalability solutions Page 96 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

4.5. HP-SEE helpdesk system

HP-SEE operates a Request Tracker (RT) based [http://www.bestpractical.com/rt/]
ticketing systems (Helpdesk) that is used for requesting some of the HP-SEE services,
reporting problems and tracking requests and reports status. The Helpdesk is available
to users either via mail (support@helpdesk.hp-see.eu being the main contact point for
the helpdesk) or via a web interface (https://helpdesk.hp-see.eu) for users with a valid
X509 certificate. The HP-SEE helpdesk is used mainly for two
purposes. User/application porting support, as well as for operational purposes. More
details in the structure of the support units and its usage have been given in the
relevant WP5 deliverables.

In terms of interoperability and mainly interoperation the helpdesk has been designed
and implemented in a way that information flow can be transferred to operators or
helpdesk systems of each individual HPC centre that participates in the HP-SEE
infrastructure. This has been implemented by creating specific queues for each HPC
centre. Each queue is stuffed with members of the support teams of the HPC centres as
well as mail aliases for their "local" Ticketing Systems/Helpdesks. Therefore both uses
and infrastructure operators are provided with a single access point for requesting
feature or report gin problems, that facilitates information exchange with the relevant
support teams. In cases where users or operators cannot identify the specific support
unit via the HP-SEE helpdesk they can submit their request/report to the generic
support queue which is monitored by the project's operators that ensure timely
forwarding of any request to the appropriate support unit.

D8.4 - Assessment of interoperability and scalability solutions Page 97 of 97

HPSEE-WP8-HU-23-D8.4-k-2013-02-28  HP-SEE consortium

5. Conclusions

The previous deliverable (D8.2) has defined a number of cations regarding
interoperability and scalability. Table 1 gives a summary of the HP-SEE applications,
which have implemented some of the defined scalability improvement actions of D8.2.
Most of them (HC-MD-QM-CS, GIM, NUQG, SFHG, FMD-PA) are using MPI and OpenMP
parallelization technologies. GENETATOMICS, MSBP, CFDOF, DeepAligner,
DiseaseGeneMapper, CompChem is using only MPI and AMR_PAR is using only OpenMP.
The AMR_PAR application is unique because it has been ported from Windows to Linux
and this gives a very good overview of porting steps. DNAMA application has been
tested in hybrid mode too, which combines MPI and Pthreads. Their scalability results
were weaker since Pthreads can’t give enough speedup with dataset used in the
benchmark. Several MPI implementations have been tested by the GENETATOMICS
application. The conclusion was that the version of MPI does not effect the scalability.
Another interesting result by GENETATOMICS application is that hyper threading should
be used where available. Various compilers have been tested by the SET application
and the result was that Intel compiler provides the best results on Intel Xeon cluster.
For the IBM Blue Gene/P architecture the obvious choice was the IBM XL compiler suite
since it has advantage versus the GNU Compiler Collection in that it supports the
double-hammer mode of the CPUs. Other interesting result is that SET application has
30% improvement when hyper threading is turned on. SET application has been tested
on NVIDIA GPU based systems too and it gives better performance using the newer
M2090 cards versus the old GTX295, which was to be expected because the integer
performance of the GTX 295 is comparable to that of M2090, but the floating
performance of the GTX is many times smaller.

Another aim of this deliverable was to improve the interoperability between the HPC
centres and improve transparent access to this integrated infrastructure. HP-SEE
common environment has been defined which includes HP-SEE minimal software stack,
recommended software stack, and the module system. We have taken into account the
user needs and the PRACE [10], DEISA [13] software stacks also. The defined software
stacks helped us to improve the harmonization level between the HP-SEE centres:
Table 22 and Table 23 give a summary of this. DeepAligner and DiseaseGeneMapper are
used to demonstrate the Bioinformatics Portal, which has been integrated with the
Hungarian HPC centres. This can be easily extended with other HPC centres too if
needed. Finally, the resource management portal helps the user to request new HPC
account in a common way; and users can also request support on the HP-SEE helpdesk
portal.

