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Preface 

The core European eInfrastructure for large-scale eScience research consists of the backbone GÉANT 
network; distributed storage & computing infrastructure - European Grid Initiative (EGI); and the 
PRACE initiative providing tier-0 High Performance Computing (HPC) infrastructure. South-East 
European eInfrastructure initiatives aim for equal participation of the less-resourced countries of the 
region in the European trends. SEEREN initiative established a regional network and the SEE-GRID 
initiative the regional Grid, with majority of countries now equal partners in GÉANT and EGI. BSI 
project established the GÉANT link to the Caucasus, active until mid-2010. However, HPC 
involvement of the region is limited. Only few HPC installations are available, not open to cross-
border research; while the less-resourced countries have no mechanism established for interfacing 
to the pan-European HPC initiatives.  

HP-SEE focuses on a number of strategic actions. First, it will link the existing and upcoming HPC 
facilities in the region into a common infrastructure, and provide operational solutions for it. As a 
complementary action, the project will establish and maintain the GÉANT link for Caucasus. 
Moreover, it will open this HPC infrastructure to a wide range of new user communities, including 
those of less-resourced countries, fostering collaboration and providing advanced capabilities to 
researchers, with an emphasis on strategic groups in computational physics, chemistry and life 
sciences. Finally, it will ensure establishment of national HPC initiatives, and act as a SEE bridge for 
PRACE. In this context, HP-SEE will aim to attract the local political & financial support for a long-
term sustainable eInfrastructure. 

HP-SEE aspires to contribute to the stabilisation and development of South-East Europe, by 
overcoming fragmentation in Europe and stimulating eInfrastructure development and adoption by 
new virtual research communities, thus enabling collaborative high-quality research across a various 
spectrum of scientific fields. 

The main objectives of the HP-SEE project are: 

1. Empowering multi-disciplinary virtual research communities. HP-SEE will involve 
and address specific needs of a number of new multi-disciplinary international 
scientific communities (computational physics, computational chemistry, life 
sciences, etc.) and thus stimulate the use and expansion of the emerging new 
regional HPC infrastructure and its services. 

2. Deploying integrated infrastructure for virtual research communities. HP-SEE will 
provide and operate the integrated South-East European eInfrastructure and 
specifically the HPC eInfrastructure for the region. In the context of the project, 
this focuses on operating the HPC infrastructure and specific end-user services 
for the benefit of new user communities, and establishing the continuity of the 
GEANT link to Caucasus. 

3. Policy development and stimulating regional inclusion in pan-European HPC 
trends. The inclusion of the new Virtual Research Communities and the 
inauguration of the infrastructure, together with a set of coordinated actions 
aimed at setting up HPC initiatives in the region, aim to contribute to regional 
development and ensure that countries in this outermost European region will 
join the pan-European HPC trends. 

4. Strengthening the regional and national human network. The project will 
capitalize on the existing human network and underlying research infrastructure 
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to strengthen scientific collaboration and boost more effective high-quality 
research and cooperation among participating SEE communities. 

 

The expected results of the project are: 

1. Project management information system established 
2. Promotional package available 
3. National HPC initiatives in core countries established 
4. HPC related Memorandum of Understanding on the regional level 
5. Set of inter-disciplinary applications running on regional infrastructure 
6. Regional HPC resources available to target virtual research communities 
7. Realization of Network Connections and deployment of relevant management 

and  monitoring tools 
8. Application software environment deployed 
9. Establishment of a relevant for the region HPC technology watch 

 

The HP-SEE project kicked-off in September 2010 and is planned to be completed by 
May 2013. It is coordinated by GRNET with 13 contractors participating in the project: 
major lead institutes in the region for computing aspects of eInfrastructures in 
Bulgaria, Romania, Turkey, Hungary, Serbia, Albania, Bosnia-Herzegovina, FYROM, 
Montenegro, Moldova (Republic of), Armenia, Georgia, Azerbaijan. The total budget is 
3.885.196 €. The project is funded by the European Commission's Seventh Framework 
Programme for Capacities-Research Infrastructures. 

The project plans to issue the following deliverables: 

 

Del. 
no. 

Deliverable name Nature Security 
Planned 
Delivery 

D1.1 Project management information system and 
“grant agreement” relationships R CO M01 

D2.1 Procurement guidelines analysis R PU M04 

D2.2 National HPC task-force modelling and 
organizational guidelines R PU M10 

D2.3 HPC centre setup cookbook R PU M14 

D2.4 Regional collaboration modalities and European 
integration feasibility R PU M16 

D2.5 Final report on international collaboration R PU M36 

D3.1 Internal and external web site, docs repository 
and mailing lists R PU M02 

D3.2 Promotional package R PU M03 

D3.3 HPC training and dissemination plan R PU M03 

D3.4 Regional & national training and dissemination 
events report R PU M12 

D3.5 Promotional package R PU M13 

D3.6 Regional & national training and dissemination R PU M36 
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events report 

D3.7 Final plan for the use and dissemination of 
foreground R PU M36 

D4.1 Target applications analysis R PU M05 

D4.2 Report on application deployment and support R PU M12 

D4.3 HPC programming techniques guidelines R PU M20 

D4.4 User community engagement and applications 
assessment R PU M31 

D4.5 Pilot Call Report R PU M35 

D5.1 Infrastructure, Network and Management 
Deployment Plan R PU M05 

D5.2 Infrastructure overview and assessment R PU M12 

D5.3 Infrastructure deployment plan R PU M14 

D5.4 Infrastructure overview and assessment R PU M34 

D6.1 Tender evaluation results 1 R PU M06 

D6.2 Tender evaluation results 2 R PU M06 

D6.3 Final Tender Results R PU M11 

D7.1 Network Implementation and equipments 
configuration R PU M13 

D7.2 Deployment of essential network services and 
management tools R PU M17 

D7.3 
CSIRT/NOC Cooperation Report and 
Harmonization of Efforts among South Caucasus 
NRENs 

R PU M23 

D7.4 Analysis of the connectivity requirements of the 
HPC users in the beneficiary regions R PU M34 

D8.1 Software scalability analysis and interoperability 
issues assessment R PU M06 

D8.2 Design of interoperability and scalability 
solutions R PU M12 

D8.3 Permanent technology watch report R PU M35 

D8.4 Assessment of interoperability and scalability 
solutions R PU M30 

Legend: R = Report, O = Other, PU = Public, CO = Confidential (only for members of the consortium incl. EC). 
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Executive summary  

What is the focus of this Deliverable? 

This deliverable presents the key outcomes of WP8 activities WP8.1 and WP8.2 - 
namely “Software environment scalability analysis and interoperability issues” and 
“Software environment adjustment”. The main aim is to describe in detail the 
achievements of the WP8 in terms of improving the scalability of the HP-SEE selected 
applications while also providing transparent job execution and usage experience across 
different HPC centers of the region. The deliverable makes use of the recommendations 
and guidelines presented in D8.2 [7] “Design of interoperability and scalability 
solutions” to demonstrate their effectiveness in the duration of the HP-SEE project.  

What is next in the process to deliver the HP-SEE results? 

The conclusions and recommendations from this deliverable will be used in the 
following HP-SEE activities: 

 WP3.3: Plan, organize and participate in technical workshops and training events 

 WP3.4: Develop and maintain training infrastructure and training community 

 WP4.2: Port and optimize regional applications of interest 

 WP4.3: Application deployment and support 

 WP5.2: Implementation of the regional HPC infrastructure 

 WP5.3: Resource Management 

 WP5.4: Application Support 

 WP5.5: Infrastructure Monitoring 

 WP8.2: Software environment adjustment 

 WP8.3: Permanent technology watch 

Additionally, this deliverable will be used as an important input in preparation and 
formulation of the following future deliverables: 

 D4.4: User community engagement and applications assessment 

 D4.5: Pilot Call Report 

 D5.4: Infrastructure overview and assessment 

 D8.3: Permanent technology watch report 

What are the deliverable contents? 

The deliverable covers all scalability and interoperability actions which have been 
defined in the D8.2. Main deliverable contents are: 

 Analysis of applications’ scalability  

 Harmonization status between the HPC centres 

 HP-SEE software stacks 

 HP-SEE common environment 
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 Resource management system and user authentication 

 Software monitoring 

 Bioinformatic portal 

Conclusions and recommendations  

Based on the work related to scalability and interoperability, performed within WP8, we 
can draw the following conclusions and recommendations for achieving better utilization 
of the infrastructure based on the types and variety of applications deployed in the HP-
SEE infrastructure: 

 MPI is the most widely used parallelization method used among the HP-SEE 
applications. This trend is seen also word-wide as most HPC codes have MPI 
implementations. 

 The increase in the number of cores per node in the recent HPC systems has 
lead to an increase of applications that are using the OpenMP parallelization 
paradigm as well as the hybrid model (MPI + OpenMP) to achieve higher 
scalability. 

 Enabling hyper-threading (although it is documented not to benefit all 
applications) in some cases has been proven to provide some better 
performance as shown by at least one HP-SEE application. 

 The usage of different compilers in some platforms and some applications can 
provide better performance. The same effect is less commonly observed by the 
usage of different MPI implementations. 

 Applications’ performance and scalability can vary based on the type of HPC 
systems that are being used for its deployment.   

 HP-SEE common environment has been installed on the HPC centres which helps 
to improve the transparent access of the users.  

 A second set of recommended software  environment has been defined (mainly 
composed of user level libraries or complete application codes), to facilitate a 
more uniform interoperable infrastructure.  

 By defining software stacks that are both designed for the needs of the HP-SEE 
applications, as well as adhering to the international and mainly European 
stacks, the HP-SEE infrastructure is highly harmonised at the regional as well as 
the European level.  

 The modules framework is used by HP-SEE as well as PRACE for providing a 
mechanism that hides the underlying software configuration complexity. 

 The HP-SEE Module’s git repository [17] is publicly available via the project. 

 Several operational and user level tools, such as the helpdesk, the access portal 
and the grid middleware, among others, provide interoperability solutions to the 
infrastructure.   

 The Bioportal [18] gives a good opportunity for the users to use the HPC sites in 
uniform and user friendly way.  
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 The scalability of the participating to the study applications varies depending on 
the application. Specific applications have demonstrated scalability of 4096 or 
1024 cores. 
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1. Introduction 

Two major topics are discussed in this document: scalability and interoperability 
assessment. A set of actions for achieving higher application scalability has been 
defined in D8.2; this set of actions has been implemented regarding several 
applications in the duration of the project. This deliverable presents the assessment of 
the results of the above process.  

The main actions used by the HP-SEE applications to improve their scalability and 
therefore their performance are: 

 Usage of different programming models  

 Efficient usage of parallel libraries  

 Efficient usage of compilers or compiler flags 

 Usage of different compute technologies i.e. CPU vs GPU 

Tools such as profilers and debuggers have assisted in the implementation of the above 
actions.  

The second part of the document is about software harmonisation. WP8 has defined a 
metric within deliverable D8.2 which describes the harmonisation status of the HPC 
centres. The metric values have been calculated again in this document. The result has 
been improved since missing software components have been installed in the centres.  

WP8 has defined two software stacks, which helped to improve the harmonisation level 
of the sites: 

 Minimal software stack  

 Recommended software stack 

The minimal software stack should be installed on all sites (with some exceptions in 
case of non-suitability) while the recommended software stack contains optional 
software components that improve the interoperability of the infrastructure if used. HP-
SEE Common Environment (HCE) has been created for these software stacks, 
facilitating the transparent access to the HP-SEE infrastructure based also in the 
European standards set by PRACE. This common environment is using the Module 
framework. The HCE modules are used in the software monitoring scripts too. The 
monitoring architecture is based on Nagios system, which is free available open source 
software. 

Finally a Bioinformatics portal has been deployed in the HP-SEE infrastructure. The 
portal is mainly used by the Life Science users providing transparent access to the 
infrastructure being available to regional scientists. The usage of this portal is described 
at the end of this document. 
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2. Analysis of applications scalability 

Table 1 summarizes the scalability methodologies, which are used by the applications 
that took part in the WP8 scalability studies. 14 applications in total have been 
analysed by the WP. 

 

Apppplication 

Parallelization 
technologies 

Compilers Technologies Hardware 
platforms Comments 

O
p

en
M

P
 

P
O

S
IX

 
th

re
ad

s 

M
P

I 

G
P

U
 

HC-MD-QM-CS *   *   GCC Intel XEON 

HPCG 
cluster, 

FINKI SC, 
local 

cluster 

Different 
parallelizati

on 
technoligies 

GENETATOMICS     *   GCC Intel XEON HPGCG 
cluster  

Different 
type of MPI 
has been 

used; hyper 
threading 
should be 
used when 
available 

GIM *   *   GCC 
Intel XEON, 

ccNUMA 
architecture 

HPCG 
ckuster, 
Pecs SC 

Different 
parallelizati

on 
technoligies 

MSBP     *   

GCC 
(4.4.x, 
4.7.X), 
Open64  

AMD Opteron 
NCIT 

cluster, 
Szeged SC 

Different 
compilers 
have been 

tested 

SET     * * 

GCC, Intel 
compiler, 
IBM XL 

compiler 

PowerPC 
based, Intel 
Xeon, M2090 

GPU card, GTX 
295-based 

GPU 

HPCG 
Cluster, 

BlueGene 
BG 

Different 
version of 
MPIs, Intel 
compiler 
provides 
the best 

result, 30% 
improveme

nt when 
hyperthredi
ng is turned 
on, M2090 
card give 

better 
result then 

GTX295 

NUQG *   *   GCC 
Intel XEON, 

ccNUMA 
architecture 

HPCG 
cluster, 
Pecs SC, 
PARADOX 

PARADOX, 
HPCG 

cluster (MPI 
parallelizati
on used), 
Pecs SC 
(OpenMP 
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parallelizati
on) 

SFHG *   *   

Open64, 
PGI, Intel, 
GCC (4.3, 
4.1, 4.5, 

4.6) 

Intel XEON, 
AMD Opteron, 

ccNUMA 
architecture 

Pecs SC, 
Szeged 

SC, 
PARADOX, 

BA-01-
ETFBL 

Different 
compiler 

flags have 
been tested 

CFDOF     *   GCC Intel XEON, 
AMD Opteron 

PARADOX, 
BA-01-
ETFBL 

Intel and 
AMD 

platform 
has been 
tested too 

DNAMA * * *   
Intel 

compiler, 
GCC 

Intel XEON, 
ccNUMA 

architecture 

HPCG 
cluster, 
Pecs, 

Debrecen 
SC 

Intel 
compiler 

gave  better 
result than 

GCC for 
larger 

number of 
cores 

AMR_PAR *       

Visual 
Studio, 
Intel 

compiler 

Intel XEON, 
ccNUMA 

IMI ASM 
RENAM 
cluster, 
Pecs SC 

Porting 
from 

Windows to 
Linux 

experiences 

DeepAligner      

* 

  

Intel 
compiler, 

GCC, 
Open64 

AMD Opteron, 
ccNUMA 

architecture, 
Intel XEON, 
Power PC 

based 

BlueGene/
P, Szeged 

SC, 
Budapest 

SC, 
Debrecen 

SC, 
Debrecen 

SC 

Serveral 
MPI 

implementa
tions (SGI-

MPT, 
OpenMPI) 

DiseaseGeneMap
per       

FMD-PA *   *   
GCC, IBM 

XL 
compiler 

PowerPC CPU, 
Intel Xeon, 
M2090 GPU 

card, GTX 295-
based GPU 

HPCG 
Cluster, 

BlueGene 
BG 

Scales on 
both 

architecture
s 

CompChem     *   GCC Intel XEON PARADOX, 
HPCG 

NAMD 
testing with 

serveral 
configuratio

ns 

Table 1 – Methodologies used by the applications 

The table depicts that several of those actions have been implemented by the 
applications while no common action is suitable for all applications. A more detailed 
description of the implemented actions and detailed results is being given in the 
following section.   
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2.1. HC-MD-QM-CS 

2.1.1. Summary 

Code author(s): Ljupčo Pejov, Anastas Mishev 

Application areas: Computational Chemistry 

Language: FORTRAN, C/C++ Estimated lines of code: 10000 

URL: http://wiki.hp-see.eu/index.php/HC-MD-QM-CS 

2.1.2. Implemented scalability actions 

 The computational methodology that we develop and use is a hybrid one, 
consisting of several steps, each of which demands computational resources to a 
various extent. It is therefore expected that each step would scale rather 
differently with the number of processors/cores. The overall hybrid 
computational procedure could not be fully automated, first of all due to its 
complexity and the need to check certain results manually. The best possibility 
to judge on its overall scalability is, therefore, to test the scalability of each of 
the component phases. Our focus in this application was, therefore, to achieve 
the optimal output from the available hardware architectures by optimizing the 
overall complex hybrid computational approach. To achieve an overall good 
scalability is possible only if one avoids the main bottlenecks in the overall 
procedure, which appear to be the statistical physics simulations as well as the 
subsequent supermolecular quantum mechanical calculations of the electronic 
structure.  

 Both MPI and OpenMP paradigms were implemented to achieve the 
parallelization (depending mostly on the codes for MC/MD simulations in the 
overall algorithm), testing several particular implementations thereof. The 
scalability results are, however, affected to a minor degree by a particular choice 
of MPI paradigm/version. Of course, this finding implies easy porting to various 
different cluster architectures.  

 Benchmark calculations were carried out with different codes enabling statistical 
physics simulations of the condensed phases that we have studied. Careful 
comparisons have been carried out between different codes and different 
segment calculations thereof. For statistical physics simulations, we have used 
CPMD, NAMD, NWCHEM, and other codes, while for supermolecular quantum 
chemical electronic structure calculations we have mostly used Gaussian, 
Gamess and ORCA. For subsequent nuclear quantum mechanical vibrational 
calculations, as well as for analysis of the results from the statistical physics 
computational phase, we have used our own (home-made) codes, mostly written 
in FORTRAN.  

 Though testing of compilation with various compilers was also done, due to 
certain specificities in the codes used for statistical physics simulations, we could 
not perform direct comparisons between scalability and performance thereof for 
each particular compiler. We are also currently testing the performances on GPU 
systems and implementing the overall methodology on these new computer 
architectures. In certain case, however, wherever that was possible, we 
performed tests to choose the best possible compiler and linker options, in 
particular the locally optimized versions of specific libraries (such as variants of 
BLAS, LAPACK, FFT etc.). On one of our local clusters, based on Intel XEON 
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processors, we are currently also testing the performances of the parallel codes 
with and without hyper threading.  

 
2.1.3. Benchmark dataset 

One of the bottlenecks in the overall computational methodology that we are 
developing is its first phase, which involves classical or quantum molecular dynamics or 
Monte-Carlo simulation of the system in question. In this report, we will focus on the 
scalability of some quantum molecular dynamics approaches.  We will discuss first the 
scalability of the Car-Parrinello molecular dynamics (CPMD). Each CPMD simulation 
consists of two phases: wave function optimization and molecular dynamics simulation. 
As the optimization runs involve an iterative procedure that needs to converge, the 
number of iterations required to achieve final convergence being strongly dependent on 
the particular architecture, compilers and compilation parameters etc., this phase is 
strongly platform – dependent and not so suitable for benchmarking. Though in the 
future we aim to make careful comparisons of the optimization results as well, the main 
accent in the present report will be put on the molecular dynamics phase. 

Computations involved in the phase of MD trajectory analyses, in the sense of checking 
the mutual statistic dependence of the snapshots are generally not much time- and 
resource-consuming, and therefore not much would be gained by their parallelization. 
Of course, other trajectory analyses, such as, e.g. analyses of the hydrogen bonding 
networks within a molecular liquid could benefit from parallelization. 

The next “bottleneck”-phase of the methodology involves quantum mechanical 
computations either of the points on a grid of points to obtain the vibrational potential 
energy curve or surface, or single-point computations of other type (such as, e.g. time-
dependent HF or DFT calculations of electronic spectra). We have also paid particular 
attention to this phase in the course of scalability studies.  

Further computation of e.g. the vibrational frequencies (i.e. the energies of vibrational 
transitions) involves either standard diagonalization procedures or fourier-transform – 
based techniques. In general, in the case of one-dimensional problems, diagonalization 
and FFT computations are quick, and do not benefit much from parallelization. 
However, in the case of multi-dimensional vibrational problems, other techniques could 
be implemented, for which the scalability is significant. 

 
2.1.4. Hardware platforms 

HPCG cluster and FINKI SC 

The following distinct hardware platforms were used:  

 the HPCG cluster with Intel Xeon X5560 CPU @2.8 GHz,  

 the FINKI SC with Intel Xeon L5640 CPU @2.26GHz 

 our local cluster at the Institute of Chemistry (with Intel XEON 12-core 
processors and fiber-channel interconnection)  

 
2.1.5. Execution times 

To demonstrate the scalability of the approach, in Figure 1 variation of the wall-clock 
computational time required to carry out an MD simulation of a modest-size water 
cluster (consisting of 32 water molecules) is plotted against the number of computing 
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processes (processors/cores). Figure 2 shows the same data, where both axes are 
logarithmic (log-log plot). The parallelization has been achieved by the MPI paradigm. 
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Figure 1 - HC-MD-QM-CS, demonstrate the scalability 
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Figure 2 - HC-MD-QM-CS, demonstrate the scalability, (log-log plot) 

The effectiveness of the quantum mechanical electronic structure calculation phase 
heavily depends on the parallelization. To illustrate this point, as a typical example, we 
consider single-point energy calculations by Gaussian, required to be performed in 
order to obtain the vibrational potential energy curve or surface. Figure 3 and Figure 4 
show the computational time required to carry out single-point Gaussian calculations at 
HF level of theory, for a system containing 10 non-hydrogen atoms, using a modest-
size basis set, plotted vs. the number of cores, in linear and logarithmic scales. 
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Figure 3 – Required computational time 1, HC-MD-QM-CS 
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Figure 4 – Required computational time 2, HC-MD-QM-CS 

 
2.1.6. Memory Usage 

The maximum memory usage of a single computational thread is heavily dependent on 
the complexity and size of the studied system. It could vary from a relatively small 
value, of the order of several hundreds of MBs, up to several GBs.  

 
2.1.7. Profiling 

The usefulness of profiling analysis is that it can shed some light on the 
computationally most demanding sub-phases of the overall computational algorithm. In 
our study, we have found out that, during e.g. a typical CPMD simulation, most of the 
computational time is spent in Fourier transformation-related computations, as well as 
in many body perturbation theory calculations in the phase of electronic structure 
computations. 
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2.1.8. Communication 

The overall communication time was shown to be somewhat less than 10% of the 
overall execution time.  

2.1.9. I/O 

Though the user-defined inputs for the computations in all phases are rather small, as 
they contain the basic parameters for particular computation, the statistical physics as 
well as quantum mechanical electronic structure codes contain their internal databases 
concerning the atomic parameters, basis set data etc. The size of the output is heavily 
dependent on the frequency with which the data from MC/MD trajectories are saved 
during the computations. Numerous scratch files are also heavily generated, which 
enable restart of the computations (if required), and also they allow intermediary 
checks of the computations.  

 
2.1.10. CPU and cache 

Most of our computations, when using the CPU-based version fit in the cache for the 
Intel-based version. For other computational architectures, we still haven’t carried out 
such testing (e.g. PowerPC processors of the Blue Gene/P and GPUs). The overall 
significance of these operations is, however, expected to be small (of the order of 
several percents.  

 
2.1.11. Analysis 

The summary of the results from our testing is the following: 

 There are two bottlenecks in out complex hybrid MC/MD-QM methodology, which 
heavily depend on parallelization: the statistical physics simulations (especially 
the QM MD) and the QM electronic structure calculations. The overall scalability 
of the two phases, however, seems to be rather good.  

 While the computations involved in the phase of MD trajectory analyses are 
generally not much time- and resource-consuming, other trajectory analyses, 
such as, e.g. analyses of the hydrogen bonding networks within a molecular 
liquid could benefit from parallelization. 

 Further computation of e.g. the vibrational frequencies (i.e. the energies of 
vibrational transitions) involves either standard diagonalization procedures or 
fourier-transform – based techniques.While in the case of one-dimensional 
problems, diagonalization and FFT computations are quick, and do not benefit 
much from parallelization, in the case of multi-dimensional vibrational problems, 
other techniques could be implemented, for which the scalability is significant. 
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2.2. GENETATOMICS 

2.2.1. Summary 

Code author(s): Jane Jovanovski, Boro Jakimovski and Dragan Jakimovski  

Application areas: Computational Physics 

Language: Fortran Estimated lines of code: 2000 

URL: http://wiki.hp-see.eu/index.php/GENETATOMICS 

 
2.2.2. Parallelization 

We use genetic algorithms and genetic programming for developing algorithm for 
solving order differential equation (single or system of ODE). One of the main 
characteristics of genetic algorithms and genetic programming as techniques for 
implementation of evolutionary paradigms is their exceptional ability to be parallelized. 
This comes from the fact that the individuals can be evaluated in parallel as their 
performance rarely, if ever, affects that of other individuals. There are numerous ways 
for parallelization of genetic algorithms, but here we will consider the following two 
techniques: 

 Island GA: The population is divided on several subpopulations - islands, each 
subpopulation is a population on its own and is developed on a separate 
processor. After a certain number of generations, all subpopulations are 
gathered together into a single population to get mixed, after which they are 
resent to the processors. 

 Paralelization of the fitness function: The most used operation in the 
evolutionary algorithms is an evaluation of the fitness value of each of the 
chromosomes. The fitness value is evaluated during selection, after crossover, 
after mutation. Therefore, this operation takes most of the processor time. There 
are different techniques for paralelization of the fitness function depending on its 
shape.   

We used the Message Passing Interface (MPI) standard for building the parallel 
evolutionary algorithm. We tested efficient of parallelism with different type of MPI but 
we found that version of MPI is not related with scalability results. For different version 
of MPI we got similar results. The current population consists of chromosomes which 
contain as many stacks as there are equations in the system that is being solved, and 
each of the stacks that denotes a postfix representation of the function is represented 
by a stack with a variable size. For example if we solve single ODE we have a 
chromosome with one stack, but if we solve system of three ODEs we have 
chromosome with 3 stacks. As a result of the dynamic size of the arrays and due to the 
fact that MPI cannot deal with arrays with variable size, it is impossible to divide the 
population on smaller islands to be sent to the corresponding processors. This reason 
led us to the implementation of the second technique for parallelization of the fitness 
function.  

 
2.2.3. New way to measure relative scalability of algorithm 

The innovative approach was adopted for measuring the speed-up of parallel 
implementation of the algorithm due to its stochastic nature. With different runs of the 
code one gets different functions with different evaluation times. To smooth out this 
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inherent stochasticity of the genetic algorithm we modified the expression for speed-up 
relative nonparallel case to 

 

Equation 1 - Measure relative scalability 

Where  equals time to develop the  generation with  processors,  equals time 
to develop  generation with one processor,  equals the number of equations in 
the system,  equals the mean value of the stack for whole population for  
generation as represents the  equation of the system when the algorithm 
execution falls on one processor,   is the mean value of the stack, for whole 
population for  generation, as represents the   equation of the system when 
the algorithm runs on  processors. 

 
2.2.4. Benchmark dataset 

For measuring scalability of algorithm we chose to solve one ODE. We choose next 
equation: 

 

Equation 2 - Measuring scalability of algorithm 

We choose step of 0,002, so we must develop fitness function in 1001 points. Our 
algorithm is based on two genetic algorithms, the parameter of algorithm are follows: 

1. Main genetic algorithm 
a. Number of generations: 12 
b. Population size: 50 
c. Mutation rate: 5% 
d. Cross over rate: 85% 

2. Sub genetic algorithm: 
a. Number of generations: 10 
b. Population size: 75 
c. Mutation rate: 5% 
d. Cross over rate: 50% 

2.2.5. Hardware platforms 

The application was tested only on HPGCC cluster with Intel Xeon L5640 CPU @2.26 
Ghz 

 
2.2.6. Execution times 

For measuring speed – up of algorithm we measure time needed for develop 15th 
generation. After that we use our equation for calculate speed up of algorithm. The 
results is shown in next tables. 
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Nodes/Cores t 
Average 
size of 

stack (l) 
t/I Speed - up Parallel Efficiency 

1 X 12 0,5277 32,9200000 0,016028391     
2 X 12 0,5708 50,2000000 0,011370745 1,409616609 0,704808305 
3 X 12 0,2278 38,2200000 0,005960888 2,688926793 0,896308931 
4 X 12 0,1603 31,2400000 0,005131462 3,123552625 0,780888156 
5 X 12 0,1360 35,4400000 0,003836756 4,17758944 0,835517888 

Table 2 - Calculate speed up of algorithm 

HT(Nodes/Cores) t 
Average 
size of 

stack (l) 
t/I Speed - up Parallel Efficiency 

1 X 12 X 2 0,3021 22,7000000 0,013309498     
2 X 12 X 2 0,4289 52,5200000 0,008166195 1,629828659 0,814914329 
3 X 12 X 2 0,2094 45,7600000 0,004576607 2,908158372 0,969386124 
4 X 12 X 2 0,1831 46,3600000 0,003950551 3,36902307 0,842255767 
5 X 12 X 2 0,1609 57,0000000 0,00282246 4,715566694 0,943113339 

Table 3 - Calculate speed up of algorithm, HT 

 

Figure 5 - Calculate speed up of algorithm 

 
2.2.7. Memory Usage 

Maximum memory usage per node is 2.5GB. Active memory is only 30MB per process, 
but no matter the number of processes per node are started, total memory usage for 
the processes on one node is 2.5GB. 
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2.2.8. Profiling 

Profiling was performed on the sequential algorithm in order to detect the initial CPU 
utilization code. The MPI application profiling will be done in the following months. 

 
2.2.9. Communication 

The MPI communication totals to 200MB/s over QDR Infiniband for 48 processes. 

 
2.2.10. I/O 

The input and output of algorithm is small. Input contains: system of ODE or single 
ODE, initial condition of ODE, interval in which we solve the equation, parameters 
related with two genetic algorithm. The output is not depend of input parameter. The 
output is txt file with the best results for each generation. Also for each generation we 
measure same specific characteristic of population, like: time needed for developed 
generation, average size of stack size, constant for the best solution etc., therefore the 
output file is less than 1MB. 

 
2.2.11. CPU and cache 

No CPU level analysis was done. 

 
2.2.12. Analysis 

From our testing we concluded that hyper threading should be used when available. For 
future work it remains to make MPI profiling and if needed to find an efficient strategy 
of reordering of the computations in order to achieve more stable computational times. 



D8.4 - Assessment of interoperability and scalability solutions      Page 33 of 97 

HPSEE-WP8-HU-23-D8.4-k-2013-02-28   HP-SEE consortium 

2.3. GIM 

2.3.1. Summary 

Code author(s): Neki Frasheri, Betim Cico 

Application areas: Computational Physics 

Language: C (gcc) Estimated lines of code: 3000 

URL: http://wiki.hp-see.eu/index.php/GIM 

 

2.3.2. Implemented scalability actions 

Actions: 
 Usage of different parallel paradigm: both OpenMP and MPI are used 
 Profiling: runtime measured using /usr/bin/time to execute the program 
 Usage of parallel libraries: no use of external parallel libraries 
 Usage of compilers: GCC with standard flags for OpenMP and MPI 

 
2.3.3. Benchmark dataset 

The model consists of a 3D cuboid underground geosection (with depth half of 
horizontal extension) represented with a 3D array of nodes.  

 

 

Figure 6 - 3D cuboid underground geosection 

 

The ground surface over the geosection where the gravity anomaly is surveyed is 
represented by a 2D array of points. 
The volume of data depends on the size of one edge of the model: 
Points: surface points of 2D array = size ^ 2  
Nodes: underground nodes of 3D array = ( size ^ 3 ) / 2 

The experimented model size was with linear size varying 11 – 21 – 41 – 81 – 
161 nodes and respective step between nodes 400m – 200m – 100m – 50m – 
25m.  
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Number of array nodes defines the volume of calculations for each iteration as in the 
table:  

 

Model size 2D array 

points 

3D array 

nodes 
Elementary 
calculations Ny Nz  

11 11 6 121 726 87,846 

21 21 11 441 4,851 2,139,291 

41 41 21 1,681 35,301 59,340,981 

81 81 41 6,561 269,001 1,764,915,561 

161 161 81 25,921 2,099,601 54,423,757,521 

Table 4 - The volume of calculations for each iteration 

The case 161x161x81 was not experimented because the huge runtime expected at the 
range of 1 year. 

 

2.3.4. Hardware platforms 

Both OpenMP and MPI solutions were tested in two platforms: 

Platform 1:  HPCG-IICT,  

 OpenMP scaled up to 16 cores due to hardware limitations.  

 MPI scaled between 1 up to 256 cores. 

Platform 2:  Pecs Supercomputing Centre, Sun Grid Engine   

 OpenMP scaled between 1 up to 1024 cores.  

 MPI scaled between 1 up to 256 cores. 

Number of cores varied with a factor of 2:  

 1 – 2 – 4 – 8 – 16 – 32 – 64 – 128 – 256 – 512 – 1024  

 

2.3.5. Execution times 

Tests with OpenMP in HPCG are with 1, 8 and 16 cores: 

Figure 7 - Tests with OpenMP in HPCG 

   
Full scale tests with OpenMP were done in Pecs SC with up to 1024 cores: 
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Figure 8 - Tests with OpenMP in Pecs SC 

Tests with MPI were carried out in HPCG with up to 256 cores: 

   

Figure 9 - Tests with MPI in HPCG 

Tests with MPI were carried out in Pecs SC with up to 256 cores: 

Figure 10 - Tests with MPI in Pecs SC 

    
Evaluated runtime for the model size 161x161x81 (spatial discretization step of 25 
meters) is one year.  
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2.3.6. Memory Usage 

The size of the model is defined by the 2D array of ground points and the 3D array of 
geosection nodes. The application uses 6 arrays 2D and 1 array 3D. For considered 
model sizes the use of main memory in Bytes is given in the table: 

 

Model size 
6 x 2D array 

elements 

3D array 

elements 

Used 
Memory 

(Bytes) Ny Nz  

11 11 6 726 726 11,616 

21 21 11 2,646 4,851 59,976 

41 41 21 10,086 35,301 363,096 

81 81 41 39,366 269,001 2,466,936 

161 161 81 155,526 2,099,601 
18,041,01

6 

Table 5 – Memory usage of GIM 

The model 161x161x81 was not experimented because of the huge runtime expected 
(approximated one year) 

The same range of storage capacity is used in hard-disk units for the results file.  

The evaluation of memory requirements for the same geosection model with spatial 
discretization step of 1 meter is 260 GB. 

 
2.3.7. Profiling 

Statistics related with the time statistics were obtained in two ways: 
a) using the time function within the program 

a) for MPI: MPI_Wtime() 
b) for OpenMP: omp_get_wtime() 

 
b) running it through the /usr/bin/time command: 

a) (/usr/bin/time gmj4-v600omp ...) ...  
b) (/usr/bin/time gmj4-v600mpi ...) ...  

 

The time command was used for statistics: 
 summary_per_processes user time 
 elapsed time 
 summary_per_cores CPU% 

 
2.3.8. Communication 

Network communication is not measured. Experimented models had memory 
sizes up to 2.5 MB, requesting a negligible transfer time compared with the 
runtime. 
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2.3.9. I/O 

Number of I/O operations with the external storage was not measured. The software 
uses only central memory. Communication with the external storage are only at the 
beginning (reading of input data) and at the end of execution (writing results data). 
 

2.3.10. CPU and cache 

Summary percentage of exploitation of cores was evaluated using the /usr/bin/time 
command (see Profiling section). Usage of the cache was not measured. 
 

2.3.11. Derived metrics 

The scalability of algorithm was analyzed using the average net runtime per process / 
thread. 
 

2.3.12. Analysis 

Algorithm works through scanning in each iteration of the 3D array of geosection nodes 
to define the optimal one. Parallelism is achieved splitting the geosection in fragments 
and scanning each of them in a separate core. 

Runtime resulted comparable with the complexity of the algorithm. Considering N the 
mean number of  nodes in one edge of the 3D array representing the geomodel (the 
linear size), the complexity of algorithm gives magnitude orders for the volume of 
calculations (proportional with the runtime): 

 
 magnitude of runtime per cores: O(1/cores) 

 magnitude of runtime per linear_size per iteration:  O(N^5) 

 magnitude of runtime per linear_size:  O(N^8) 

Experiments were done for small and medium model discretization sizes. Scalability 
degenerates for small models run in many parallel nodes. Maximal runtime obtained 
was at the range of one day using 1024 cores for models with spatial discretization step 
of 50m, which is large for many geophysical engineering problems. Prognosis for 
models with spatial discretization step of 25m was at the range of one year in 1024 
cores – practically impossible, while for engineering works smaller spatial steps to one 
meter may be required. 

Modification of the algorithm for the reduction of the volume of calculations leading to a 
reduction of the runtime is considered. The request for many cores makes difficult the 
widespread of similar algorithms for engineering works, because of difficulties to access 
easily traditional parallel systems anytime, and the use of GPU for parallel processing is 
considered as a way to bring necessary parallel capacities in desktop platforms.  
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2.4. MSBP 

2.4.1. Summary 

Code author(s): Jumber Kereselidze, George Mikuchadze 

Application areas: Life Science 

Language: C/C++ Estimated lines of code: 337000 

URL: http://wiki.hp-see.eu/index.php/MSBP 

2.4.2. Implemented scalability actions 
 As a first step application was ported on SEE-GRID infrastructure using MPICH1. 
 At the beginning we were using GNU C/C++ compilers version 4.4.x which was 

not optimized for current processors and hence run time was very large.  
 At a second step the parallelization has been performed with OpenMPI 

implementation of MPI (v. 1.6.x) installed on the hardware platforms that were 
available to us.  

 We tested various compilers and concluded that the within free compiler suites  
the GNU Compiler v4.7.x  and Open64 Compiler Suite with ACML provided the 
best results for our AMD Opteron clusters. 

 We used the both C compilers through mpicc wrapper with default flags which 
were optimal for the working nodes 

 
2.4.3. Benchmark dataset 

For the benchmarking we chose a particular molecular structure with 53 atoms and 216 
electrons for stable output. 

 

2.4.4. Hardware platforms 

NCIT-Cluster  and Szeged supercomputer.  

Two distinct hardware platforms were used: 

 NCIT cluster with AMD Opteron 2435 CPU @2.6 Ghz in Romania;  

 Szeged supercomputer with  AMD Opteron 6174 (12-core Magny-Cours) CPU 
@2.2 Ghz in Hungary.  

 

2.4.5. Execution times 

NCIT-Cluster   

working nodes: 4 X 6core (24 cores) AMD Opteron 2435 (2.6Ghz) 
mpi: openmpi v1.6 
C compiler: gcc v4.7.0 
 
# cores   Time (HH:MI:SS)    # nodes 
16 cores           06:25:26        2 
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24 cores           05:33:34        2 
32 cores           08:46:45        2 

 

Szeged SC   

working nodes: 4 X 12core (48 cores) AMD Opteron 6174 (2.2Ghz) 
mpi: openmpi v1.6 
C compiler: Open64 Compiler Suite: Version 4.2.4 with AMD Core Math Library (ACML)  
 
# cores   Time (HH:MI:SS)    # nodes 
08 cores          10:17:25             2            
16 cores          07:54:30             6 
24 cores          07:01:17             2 
32 cores          08:45:08             7 
64 cores          09:03:20            13  
 

2.4.6. Memory Usage 

The maximum memory usage of MPI implementation was quite small 100Mb per 
cpu/core. 
 

2.4.7. Communication 

The communication for this application is critical (Changing of the Infiniband QDR with 
1Gb Ethernet results to 2-3 times increasing of execution time). Therefore we used 
only clusters with the fast Infiniband network for the internal high-performance 
communication. 
 

2.4.8. I/O 

The input for the application is small less then tens of MBs and output file size is in the 
same size. 
 

2.4.9. CPU and cache 

We believe that most of the computations fit in the cache for the AMD Opteron CPUs. 
 

2.4.10. Analysis 

From our testing we concluded that most effective are CPUs with high brutal fpu 
performance. Inter-process communication intensity reduces scalability efficiency and 
the most effective are 16-24 CPU/cores for MPI parallelism.  
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2.5. SET 

2.5.1. Summary 

Code author(s): Emanouil Atanassov 

Application areas: Computational Physics 

Language: C/C++ Estimated lines of code: 6000 

URL: http://wiki.hp-see.eu/index.php/SET 

2.5.2. Implemented scalability actions 

 

Actions: 

 Our focus in this application was to achieve the optimal output from the 
hardware platforms that were available to us. Achieving good scalability depends 
mostly on avoiding bottlenecks and using good parallel pseudorandom number 
generators and generators for low-discrepancy sequences. Because of the high 
requirements for computing time we took several actions in order to achieve the 
optimal output.  

 The parallelization has been performed with MPI. Different version of MPI were 
tested and we found that the particular choice of MPI does not change much the 
scalability results. This was fortunate outcome as it allowed porting to the Blue 
Gene/P architecture without substantial changes.  

 Once we ensured that the MPI parallelization model we implemented achieves 
good parallel efficiency, we concentrated on achieving the best possible results 
from using single CPU core.  

 We performed profiling and benchmarking, also tested different generators and 
compared different pseudo-random number generators and low-discrepancy 
sequences.  

 We tested various compilers and we concluded that the Intel compiler currently 
provides the best results for the CPU version running at our Intel Xeon cluster. 
For the IBM Blue Gene/P architecture the obvious choice was the IBM XL 
compiler suite since it has advantage versus the GNU Compiler Collection in that 
it supports the double-hammer mode of the CPUs, achieving twice the floating 
point calculation speeds. For the GPU-based version that we developed recently 
we relay on the C++ compiler supplied by NVIDIA.  

 For all the choosen compilers we performed tests to choose the best possible 
compiler and linker options. For the Intel-based cluster one important source of 
ideas for the options was the website of the SPEC tests, where one can see what 
options were used for each particular sub-test of the SPEC suite. From there we 
also took the idea to perform two-pass compilation, where the results from 
profiling on the first pass were fed to the second pass of the compilation to 
optimise further.  

 For the HPCG cluster we also measured the performance of the parallel code 
with and without hyperthreading. It is well known that hyperthreading does not 
always improve the overall speed of calculations, because the floating point units 
of the processor are shared between the threads and thus if the code is highly 
intensive in such computations, there is no gain to be made from 
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hyperthreading. Our experience with other application of the HP-SEE project 
yields such examples. But for the SET application we found about 30% 
improvement when hyperthreading is turned on, which should be considered a 
good results and also shows that our overall code is efficient in the sense that 
most of it is now floating point computations, unlike some earlier version where 
the gain from hyperthreading was larger.  

 For the NVIDIA-based version we found that we have much better performance 
using the newer M2090 cards versus the old GTX295, which was to be expected 
because the integer performance of the GTX 295 is comparable to that of 
M2090, but the floating performance of the GTX is many times smaller.   

 
2.5.3. Benchmark dataset 

 

For the benchmarking we fixed a particular division of the domain into  

800 by 260 points, electric field of 15 and 180 femto-seconds evolution time. The 
computational time in such case becomes proportational to the number of Markov Chain 
Monte Carlo trajectories. In most tests we used 1 billion (10^9) trajectories, but for 
some tests we decreased that in order to shorten the overall testing time.    

 

 
2.5.4. Hardware platforms 

HPCG cluster and Blue Gene/P supercomputer.  

Four distinct hardware platforms were used: 

 the HPCG cluster with Intel Xeon X5560 CPU @2.8 Ghz,  

 Blue Gene/P with PowerPC CPUs,  

 our GTX 295-based GPU cluster (with processors Intel Core i7 920)  

 our new M2090-based resource with processors Intel Xeon X5650.  

 
2.5.5. Execution times 

Table 6 – Execution times of SET  
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Comparison of the execution time and parallel efficiency of SET application are shown 
on HPCG (Table below) and BlueGene/P (Table above). 

 

 

Table 7 Comparison of the execution time and parallel efficiency of SET 

 

 

Figure 11 – CPU time on Blue Gene/P 

 
2.5.6. Memory Usage 

The maximum memory usage of a single computational thread is relatively small, in the 
order of 100 MB. 

On the GPUs there are several different kinds of memory, some of them rather limited. 
The available registers and the shared memory are especially problematic, since there 
is a risk if the available registers are all used some local variables to be spilled to global 
memory, encountering high latency and other issues. Still we found reasonable 
performance using 256 GPU threads, which is an acceptable number. 

 
2.5.7. Profiling 

Profiling was performed in order to improve the compiler optimisation during the second 
pass and also in order to understand what kind of issues we may be having in the 
application. We found as expected that most of the computational time is spent in 
computing of transcendental function like sin, cos, exp, and also in the generation of 
pseudorandom numbers. We attempted in the GPU version to replace the regular sin, 
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cos, etc., with the less-accurate versions that are more efficient, but we found that the 
gain from that is relatively small and is not worth the loss of accuracy.  For the GPU-
based version we obtained relatively high percentage of divergence within warps, which 
means that some logical statements are resolved differently within threads of the same 
warp and there is substantial loss of performance. So far we have not been able to re-
order the computation so as to avoid it. 

 
2.5.8. Communication 

The communication for this application is not critical in the sense that the 
communication takes less than 10% of the execution time. 

 
2.5.9. I/O 

The input for the application is small, containing the parameters of the problem at 
hand. The output is written out at the end of the computation and its size depends on 
the parameters. For a reasonable size of the domain the output is in the order of 
several megabytes. More accurate mesh is reasonable only for smaller evolution times 
and the output size will be proportional to the size of the mesh 

 
2.5.10. CPU and cache 

We believe that most of the computations of the CPU-based version fit in the cache for 
the Intel-based version. For the PowerPC processors of the Blue Gene/P some lookup 
operations when sampling the random variables use the main memory and thus entice 
higher latency. For the GPU-based version the situation is similar, since some of the 
tables are larger than the size of the so-called shared-memory. In both cases, the 
overall significance of these operations is less than 5%.   

 
2.5.11. Analysis 

From our testing we concluded that hyperthreading should be used when available, 
production Tesla cards have much higher performance than essentially gaming cards 
like GTX 295, two passes of compilation should be used for the Intel compiler targeting 
Intel CPUs and that the application is scalable to the maximum number of available 
cores/threads at our disposable. For future work it remains to find an efficient strategy 
of reordering of the computations on the GPUs in order to avoid warp divergence. For 
the CPU-based version we have also developed an MPI meta-program that measures 
the variation and uses genetic algorithm (from galib library) to optimise the transition 
density.  This step will be added as a pre-processing stage of the program in order to 
provide some speedup in order of 20% to the overall computations, but to do so we 
need to find the right balance between this stage and the main computational stage.   
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2.6. NUQG 

2.6.1. Summary 

Code author(s): Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia 

Application areas: Computational Physics 

Language: C/C++ Estimated lines of code: 260000 

URL: http://wiki.hp-see.eu/index.php/NUQG 

2.6.2. Implemented scalability actions 

The NUQG application modules are developed at IPB's PARADOX cluster, and within the 
framework of HP-SEE project ported to the HPCG and PECS SC. NUQG SPEEDUP module 
is MPI-parallelized at HPCG cluster, while the NUQG GP module is OpenMP-parallelized 
at PECS SC. The applications are compiled using the Intel C/C++ compiler that gives 
much better performance compared to the GCC compiler. In addition, NUQG SPEEDUP 
module is improved using the algorithm that uses Sobol’s set of quasi-random 
numbers. 

 
2.6.3. Benchmark dataset 

Performance of the NUQG SPEEDUP module is assessed for the case of a quantum 
anharmonic potential, with the level p = 4 effective action, and using the target 
bisection level s = 8 (corresponding to the calculation of 255-dimensional integrals). 
Each quantum amplitude is calculated using the Monte Carlo sample of NMC = 109 
trajectories.  

 

Performance of the NUQG SPEEDUP quasi-MC algorithm is also assessed for the 
anharmonic potential, with the effective action level p = 4, bisection level s = 5, and 
using the Monte Carlo sample of NMC = 108. 

 

The NUQG GP module performance at single multi-core machine is calculated for a 3D-
algorithm for space discretization with the grid mesh Nx=Ny=1200 and Nz=600. 

 
2.6.4. Hardware platforms 

The NUQG application is developed at PARADOX cluster (84 worker nodes with 2 x quad 
core Xeon E5345 @ 2.33 GHz with 8 GB of RAM per node), and ported to HPCG (36 
blades BL 280c with 2 x Intel Xeon CPU X5560 @ 2.8 GHz) and Pesc SC resource 
centres (SGI 1000 Ultraviolet with SMP ccNUMA architecture - Intel Xeon X7542 6-core 
processors). 

 
2.6.5. Execution times 

The NUQG SPEEDUP module is MPI parallelized. Its execution time and speedup as a 
function of the number of CPU cores at PARADOX and HPCG clusters is illustrated in 
Figure 12. While the speedup remains practically perfect on both of these two clusters, 
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better absolute execution times at HPCG cluster is a consequence of a higher CPU 
frequency. 

 

Further improvement in the performance of the NUQG SPEEDUP module is achieved by 
using quasi-random numbers instead of pseudo-random numbers generated by the 
SPRNG algorithm. The improved algorithm uses Sobol’s set of quasi-random numbers 
for generation of trajectories relevant for calculation of transition amplitudes in the 
path integral formalism. The ratio of the CPU execution time of the original MC and the 
improved quasi-MC code in order to achieve the same precision of the amplitude is 
illustrated in Figure 13. This result is obtained at HPGC cluster. 

 

 

Figure 12 - Execution time and speedup as a function of the number of CPU 
cores at PARADOX and HPCG clusters 

 

 

Figure 13 - Ratio of the CPU execution time of the original MC and the improved 
quasi-MC code as a function of the precision of the amplitude. 

 

The NUQG GP module is OpenMP parallelized. The speedup of the NUQG GP 3D module 
for real- and imaginary-time propagation at a single large multi-core machine is given 
in Figure 14. 
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Figure 14 - Speedup in the execution time of the NUQG GP module as a function 
of the number of CPU cores. 

The NUQG GP is ported to PECS shared memory cluster - SGI 1000 Ultraviolet with SMP 
(ccNUMA) architecture. Since NUQG GP module is highly memory-intensive application, 
and due to the fact that NUMA architecture memory access time depends on the 
memory location relative to a processor, initial performance of the code was very 
fluctuating. The stable performance is achieved when all available memory is utilized. 
Effective speedup of the application for such cases is given in Figure 15, while Figure 16 
shows total occupied memory at the cluster. 

 

  

Figure 15 - Effective speedup of the 
NUQG GP application. 

Figure 16 - NUQG GP total memory 
allocation. 

 
2.6.6. Memory Usage 

Memory usage of NUQG SPEEDUP and GP modules depends on the physical 
characteristics of the physical system of interest. For typical configurations, NUQG 
SPEEDUP module requires less than 1 GB of RAM, while the execution of NUQG GP 3D 
module typically requires more than 32 GB of RAM. 
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In the NUQG SPEEDUP module, maximal accessible level p is limited by the amount of 
memory required for symbolic derivation of the effective potential. This symbolic 
calculation is implemented in Mathematica for general 1D, 2D, and 3D potentials, as 
well as for a general many-body theory in arbitrary number of spatial dimensions. 
Execution of these codes for level p = 10 requires 10-15 MB of RAM in 1D, 60 MB in 2D, 
860 MB in 3D, while the execution of the many-body SPEEDUP Mathematica code 
requires approximately 1.6 GB. Beside of this, minor additional memory (less than 100 
MB) is required by the SPEEDUP C code. 

 

Memory consumption of the NUQG GP module depends on a number of spatial 
dimensions (1D, 2D, 3D), symmetries of the trapping potential of the Bose-Einstein 
condensate (axially-symmetric, spherically-symmetric), and the type of time 
propagation studied (real-time, imaginary-time). The following table illustrates typical 
memory usage of 12 NUQG GP module codes. 

 

NUQG GP code Memory usage 

imagtime1d > 1 GB 

imagtimecir > 1 GB 

imagtimesph > 1 GB 

realtime1d > 2 GB 

realtimecir > 2 GB 

realtimesph > 2 GB 

imagtimeaxial > 8 GB 

imagtime2d > 8 GB 

realtimeaxial > 16 GB 

realtime2d > 16 GB 

imagtime3d > 16 GB 

realtime3d > 32 GB 

Table 8 - Memory usage of NUQG GP codes. 

 
2.6.7. Profiling 

Profiling of the NUQG SPEEDUP module shows that most of the computational time is 
spent in computing of transcendental function (exp), as well as in the calculation of the 
effective potential. Based on this, using the Intel compiler optimization, calculation of 
transcendental functions is reused. The NUQG GP module profiling shows that most of 
the time is spent in time propagation functions and in the normalization. We have 
managed to optimize the normalization function using several analytical insights, while 
the time propagation functions will require further cache optimization. 

 
2.6.8. Communication 

Communication for the NUQG SPEEUP module is not critical, but, on the contrary, it 
becomes one of the main issues for the NUQG GP module. Further optimizations of the 
GP module will focus on this. 
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2.6.9. I/O 

Input parameters of the NUQG SPEEDUP module are specified from the command line, 
while the output is a small text file (up to 1KB) that contains numerical values of 
transition amplitudes for different levels p. The NUQG GP module has a small input file 
that describes physical system of interest. In addition to this, it is possible to specify 
the initial state of the condensate. This initial state is provided as a single file, whose 
size depends of the spatial grid mesh, and can be from a few MBs to several GBs. The 
output of the NUQG GP module is also configurable, and may require from several GBs 
to several TBs of disk space. 

 
2.6.10. Analysis 

The NQG SPEEDUP module gives excellent performance results. The application is in a 
mature stage, and further optimization may give very small improvements in the 
performance. On the other hand, the NUQG GP module invites further optimizations. 
The further development of this application will be focused on MPI parallelization, which 
will provide better scalability on shared memory systems, but also at e-Infrastructure 
with the InfiniBand interconnect. Also, cache optimization within time propagation 
functions may give better performance. 
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2.7. SFHG 

2.7.1. Summary 

Code author(s): Sreten Lekic, Igor Sevo, Mihajlo Savic  

Application areas: Computational Physics 

Language: C/C++, Fortran Estimated lines of code: 2900 

URL: http://wiki.hp-see.eu/index.php/SFHG 

2.7.2. Implemented scalability actions 
 We have first refactored the serial Fortran code we had and after that created a 

new C++ code as existing Fortran code was unsuitable for parallelization. News 
approach yielded much better performance, even is serial mode, with execution 
time decrease to approximately 1/15 of original. This was tested only on a small 
scale problem as anything over the level of 7 was unusably slow on original 
code. 

 Parallelization was attempted with MPI and OpenMP. Due to the nature of the 
problem being solved, MPI yielded improvements only up to a small number of 
CPUs and as such was dropped for current time frame. Version of code with 
OpenMP was fully developed and benchmarked. Hybrid approach is planned for 
future versions. 

 We have tested three different compilers: Open64, Portland Group, Intel and 
GNU C/C++ compilers. Open64 and PGCC had an incomplete support for 
OpenMP features required due to either somewhat older version or incomplete 
standard support and as such provided limited benefit as compared to serial 
code. ICC compiled with no problems even at –O3 level but the performance was 
found to be inferior to code produced by GCC (execution time for both serial and 
parallel version was up to two times longer for all types of walks and tested 
levels). 

 We have tested performance and correctness of different optimization levels. We 
found significant performance increase when using –O3 with default settings for 
GCC 4.5 and GCC 4.6. Execution time was 1.8 times shorter with –O3 as 
compared to no optimization for serial and 1.6-1.8 times shorter for parallel 
version. 

 Not all versions of GCC support all needed OpenMP functions so we have to 
emulate desired behavior on older versions (GCC 4.3 at Pecs SC and GCC 4.1 as 
Szeged SC).  

 We have tested different approaches to new thread creation as default OpenMP 
settings were proving to be overly optimistic at higher levels. The issue arises 
from the huge number of threads created by nested parallel code. If we severely 
limit the number of threads or remove nesting and expand manually first few 
levels we achieve very limited speedup which decreases with the level of the 
problem as there are lingering long running threads that severely decrease 
parallel performance. On default settings we achieved excellent speedup up to 
level 8 but had issues with huge number of threads created by OpenMP at level 
9. After performing benchmarking with different parameters we settled at 
limiting the nesting at level 21 and using maximum 2 threads per level. Testing 
has shown that we are running manageable number of active threads (under 40 
per CPU core) with no significant loss of performance. 
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2.7.3. Benchmark dataset 

We have used Sierpinski gaskets of levels 7, 8 and 9 for testing. Level 7 was used for 
initial very small scale tests while levels 8 and 9 were used for proper performance 
testing. 

 
2.7.4. Hardware platforms 

We have performed performance testing on: 
 PARADOX with up to 8 CPU cores 

o Intel(R) Xeon(R) CPU E5345  @ 2.33GHz 
o Small scale test not suitable for true scalability tests 

 BA-01-ETFBL with up to 16 CPU cores 
o AMD Opteron 6128 @ 2.00 GHz – total 16 CPU cores 

 Szeged SC with up to 48 CPU cores 
o AMD Opteron 6174 @ 2.00 GHZ – total 48 CPU cores 

 Pecs SC with up to 48 CPU cores – SGI 1000 Ultraviolet 
o Intel Xeon X7542 – 1152 total CPU cores 

 
2.7.5. Execution times 

It can be seen from the execution times that for small scale tests with levels of up to 8 
there is little benefit of scaling past 16 or at most 24 CPU cores. While the ratio of wall 
time and CPU time does significantly increase, the number of found walks per second is 
entering saturation. One also has to take into consideration an architecture and 
organization of a specific SMP implementation especially in NUMA cases. 

 

For level 9 we can see that there are clear benefits of scaling past 16 CPU cores and 
this level was chosen for scalability testing with larger number of cores. Walks per 
second values are not comparable among different levels. 

 

Cores Walk 
type Level 

Nest 

limit 
Wall 

time [s] 
CPU 

time [s] 
Wall/CPU 

time Eff. Walks/s 

1 A (2) 8 14 4041 4040 1.00 1.00 16388.71 

2 A (2) 8 14 2050 4098 2.00 1.00 32305.74 

4 A (2) 8 14 1044 4155 3.98 0.99 63435.61 

8 A (2) 8 14 571 4354 7.63 0.95 115983.84 

12 A (2) 8 14 455 4664 10.25 0.85 145553.35 

16 A (2) 8 14 405 5023 12.40 0.78 163522.89 

8 A (2) 9 21 39227 300334 7.66 0.96 62026.69 

16 A (2) 9 21 21134 336201 15.91 0.99 115128.27 

 Table 9 - Scalability test results for BA-01-ETFBL with up to 16 CPU cores 
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Figure 17  - CPU / Wall time ratio as function of number of CPU cores (BA-01-
ETFBL) 

 

Cores Walk 
type Level 

Nest 

limit 
Wall 

time [s] 
CPU 

time [s] 
Wall/CPU 

time Eff. Walks/s 

6 A (2) 8 emul. 486 2803 5.77 0.96 136269.08 

12 A (2) 8 emul. 406 3487 8.59 0.72 163120.13 

18 A (2) 8 emul. 375 4244 11.32 0.63 176604.73 

24 A (2) 8 emul. 319 5089 15.95 0.66 207607.44 

48 A (2) 8 emul. 413 8216 19.89 0.41 160355.38 

48 A (2) 9 emul. 18415 561336 30.48 0.64 132127.11 

  Table 10 - Scalability test results for Pecs SC with up to 48 CPU cores 



D8.4 - Assessment of interoperability and scalability solutions      Page 52 of 97 

HPSEE-WP8-HU-23-D8.4-k-2013-02-28   HP-SEE consortium 

 

Figure 18 - CPU / Wall time as function of number of CPU cores (Pecs SC) 

 
2.7.6. Memory Usage, CPU and cache 

Memory requirements for this application are very modest and comfortably fit inside 
operating RAM with significant percent also fitting inside cache of CPU. Total memory 
requirements depend on level of recursion, nesting level and walk type but are under 
128 MB total for tested levels. 

 
2.7.7. Profiling 

We have used gprof to find bottlenecks in execution and measure impact of fork 
placement at various steps in the algorithm. 

 
2.7.8. Communication and I/O 

Communication and I/O expenses are not critical for this application. We do however 
have a significant influence of thread forking to overall performance, which was 
explained in previous sections. This is also a reason that MPI version provided very 
limited performance increase. 

 
2.7.9. Analysis 

We have concluded that for this application significant performance increase was a 
result of rearchitecturing the application by producing new C++ code. MPI currently 
provides negligible benefits while use of OpenMP on SMP machines produces significant 
performance gains and scales very well up until tested 48 CPU cores. In order to 
achieve better scalability it is necessary to use higher levels of recursion for Sierpinski 
gaskets as level 8 stops producing meaningful performance increase after 24 CPU 
cores. 
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2.8. CFDOF 

2.8.1. Summary 

Code author(s): Sreten Lekic, Mihajlo Savic 

Application areas: Computational Chemistry 

Language: C, OpenFOAM Estimated lines of code: 300 

URL: http://wiki.hp-see.eu/index.php/CFDOF 

2.8.2. Implemented scalability actions 
 In this application we are using OpenFOAM CFD toolbox and as such we did not 

alter the source code of the application. 
 We have experimented with different mesh generation approaches and mesh 

partitioning algorithms in order to obtain better scalability. 
 We created a proof-of-concept parallel post-processing application but we are 

currently facing stability issues with it. 

2.8.3. Benchmark dataset 

We used simplified smaller scale methane burner and rhoReactingFoam solver for 
benchmarking (gor_fine_paradox4). Total mesh size was 811 MB and contained 
1893571 points, 18913870 faces and 9132732 tetrahedral cells.  

 
2.8.4. Hardware platforms 

We have performed performance testing on: 
 PARADOX with up to 32 CPU cores 

o Intel(R) Xeon(R) CPU E5345  @ 2.33GHz 
 BA-01-ETFBL with up to 16 CPU cores 

o AMD Opteron 6128 @ 2.00 GHz – total 16 CPU cores 

2.8.5. Execution times 

It can be seen from table with execution times that there are two dominant factors: 
pre/post-processing and simulation. Pre-processing and especially post-processing time 
increases with number of CPU cores used for simulation but, fortunately, not 
dramatically.  

Table 11 - Scalability test results for PARADOX with up to 32 CPU cores 

CPU cores Pre-/Post- 
processing [s] Simulation [s] Total [s] Simulation 

Speedup 
Total 

Speedup 

1 0.00 127137.60 127137.60 1.00 1.00 

4 2560.00 33922.80 36482.80 3.75 3.48 

8 2650.72 17496.00 20146.72 7.27 6.31 

16 2817.06 8359.20 11176.26 15.21 11.38 

32 3140.02 4135.05 7275.07 30.75 17.48 
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Figure 19 - Simulation and total times and speedup as function of number of 
CPU cores 

 
2.8.6. Memory Usage, CPU and cache 

Memory requirements for this application are heavily dependent on the size of the 
problem being simulated. In our testing, we concluded that one should not use over 1 
GB per CPU core (which fits with most of the problems simulated as well as available 
project infrastructure). 

 
2.8.7. Profiling 

As we did not alter the source code of the CFD and chemistry solver we did not have 
the need for profiler. 

 
2.8.8. Communication and I/O 

I/O operations were affecting mostly pre- and post-processing parts of the workflow but 
not in the significant amount. Communication between processes can be minimized by 
using adequate mesh partitioning approach. For generic use case we would suggest 
using scotch which is designed to minimize number of processor boundaries. If there is 
sufficient knowledge of concrete simulation and model behavior better results can be 
achieved by using hierarchical or, better yet, manual decomposition. 

 
2.8.9. Analysis 

Since this application was based on tried and true solvers that have already been 
thoroughly benchmarked and analyzed, we focused our attention to issues specific to 
this concrete case. 
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When discussing scalability of simulation, one has to take into consideration several 
factors. If we are dealing with cold flow simulations, with no chemistry involved, then it 
is fairly easy to achieve good scalability of simulation. But, when we include chemistry 
in simulation things start to get complicated as chemistry is more time consuming to 
simulate especially when dealing with complex reactions and more realistic models. As 
can be seen on Figure 20 close to the beginning of the simulation, computationally 
intensive part of the simulated model is fairly small and using huge number of CPUs 
would bring limited benefits. If increasing performance is a must even a this stage, one 
must take care of properly partitioning the mesh so that we do not end up with many 
processes waiting for few with more complex simulation to handle. After a while, we 
can see that most of the model volume is now involved in time consuming chemistry 
calculations and as such it becomes easier to decompose the mesh in such a way to 
achieve good scalability. 

 

 

Figure 20 - Cross section of burner after T=0,1 s and T=1,3 s (illustration) 

 

Above analysis applies foremost to solvers that work in time domain. When we are 
dealing with steady-state solvers, according to our results, they tend to reach an 
analogous point in fairly short amount of time and are as such better, or at least easier, 
choices for good scalability. 
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2.9. DNAMA 

2.9.1. Summary 

Code author(s): The Exelixis Lab 

Application areas: Life Sciences 

Language: C Estimated lines of code: 50000 

URL: http://wiki.hp-see.eu/index.php/DNAMA 

2.9.2. Implemented scalability actions 

 RAxML versions can be divided by parallelization methods as:  
 Coarse grained parallelization – using MPI  
 Fine grained parallelization – using OpenMP and later Pthreads  
 Hybrid version, which combines coarse and fine grained parallelization.  
 Application was tested without and with SSE3 support for Intel compilers 
 Raxml was compiled with GCC and Intel compiler (ICC) 
 Work was performed for smaller and larger datasets for single gene and up to 5 

genes in multigame mode 
  Since RAxML doesn’t offer some tree visualization tools for randomly generated 

and best trees we used Dendroscope and ugene for this action. 
 Application was launched on platform with PBS scheduler (HPCG) and Sun Grid 

Engine (Pecs SC and Debrecen SC) 

 
2.9.3. Benchmark dataset 

Benchmark was completed on sample of 213 DNA sequences of Salmo trutta from 
different geographical region of Europe - 552 base pairs; 20 DNA sequences with 5 
genes for multigene analysis 

 
2.9.4. Hardware platforms 

Three supercomputers are used for RAxML tests: 

 HPCG cluster with Intel Xeon X5560 CPU @2.8 Ghz, 

 Debrecen SC with Intel Xeon X5680  

 Pecs SC with Intel Xeon X7542 (Nehalem EX)  

 
2.9.5. Execution times 

Executing time is measured on HPCG cluster using MPI and OpenMP and GCC and Intel 
compiler. MPI test performed with 3200 bootstraps (randomized trees) while Pthreads 
was done with 100 bootstraps. 
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Table 12 – DNAMA MPI result 

Cores 
GCC ICC 

CPU time [s] Speedup Efficiency CPU time [s] Speedup Efficiency 

16 4544,49 4348,24 

32 2426,11 1,87 0,94 2278,67 1,91 0,95 

64 1203,55 3,78 0,94 1155,79 3,76 0,94 

128 646,42 7,03 0,88 619,96 7,01 0,88 

256 382,62 11,88 0,74 367,97 11,82 0,74 

 

 

Figure 21 – DNAMA MPI result 

 

Cores 
GCC ICC 

CPU time 
[s] 

Speedu
p 

Efficienc
y 

CPU time 
[s] 

Speedu
p 

Efficienc
y 

1 1185,35 1195,83 
2 815,34 1,45 0,73 823,37 1,45 0,73 
3 697,62 1,70 0,57 621,74 1,92 0,64 
4 601,46 1,97 0,49 552,54 2,16 0,54 
6 557,04 2,13 0,35 504,29 2,37 0,40 
8 549,03 2,16 0,27 492,02 2,43 0,30 

12 608,27 1,95 0,16 517,01 2,31 0,19 
16 656,04 1,81 0,11 529,77 2,26 0,14 

Table 13 – DNAMA Pthreads result 
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Figure 22 - DNAMA Pthreads result 

 
2.9.6. Memory Usage 

RAxML uses up to 10MB per working bootstrap (or per core) or up to 160 MB per server 
on HPCG, so it can be classified as low consumer of RAM. 

 
2.9.7. Profiling 

Profiling was done by code developers. 

 

2.9.8. Communication 

Communication takes less than 10% of time and therefore DNAMA can be classified as 
not communication intensive application. 

 

2.9.9. I/O 

Input file is small or medium sized (up to few MB) as well as main output files. 
Application makes few files for every bootstrap which summary size can go up to few 
GB, but they are downloaded only in case of analysis of every tree in bootstrap, not 
only best tree. 

 
2.9.10. CPU and cache 

We consider that most of the computations of the RAxML work in the cache for the 
tested Intel-based version. 

 
2.9.11. Analysis 

MPI version of RAxML shows relatively good results and we used them most of time, 
mostly up to 128 cores. Number of used cores should be consummate with number of 
executed bootstraps and number of DNA sequences. GCC and ICC showed similar 
results with MPI. 
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Since Pthreads version gave us bad results for larger number of cores we decided to 
use application with 2 and 4 threads in regular use. Pthreads parallelization is per 
length of DNA sequence, so this version can give better performance for different 
dataset with larger number of base pairs per DNA sequence, especially with more than 
10.000 base-pairs. Intel compiler gave us better result than GCC for larger number of 
cores.  

Hybrid version, which combines MPI and Pthreads, was tested, but their scalability 
results were weaker since Pthreads can’t give enough speedup with dataset used in 
benchmark. RAxML light and Examl was also tested, which do computations over 
predefined tree. RAxML was more comfortable for our work, because it makes 
computation over different, randomly generated trees and gives best tree as a result. 
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2.10. AMR_PAR: porting from Windows to Linux 

2.10.1. Summary 

Code author(s): Boris Rybakin, Nicolai Iliuha 

Application areas: Computational Physics 

Language: Fortran Estimated lines of code: 700 (9 modules) 

URL: http://wiki.hp-see.eu/index.php/AMR_PAR 

2.10.2. Implemented scalability actions 

Initial version of the AMR_PAR application elaborated for running in IMI ASM-RENAM 
Cluster environment that supported virtualization platforms and allowed to use various 
operating systems. The application was elaborated in OpenMP mode and prepared for 
execution on Microsoft Windows Compute Cluster 2003.  

For transforming AMR_PAR application to run in the regional HP-SEE infrastructure the 
application developers made preparation works for the application porting to the assign 
remote sites. Preparation was being carrying out on virtual machine with Scientific 
Linux 5.5 and Intel® Parallel Studio XE 2011 for Linux.    

 
2.10.2.1 The sources of some problems when porting applications’ 

code from Windows to Linux platform 

 Using in program code blocks in other languages;  
 Using the default declarations of variables and constants. They can be signed or 

not, long or short integer; 
 The absence of variables initialization when allocating memory for the structure 

or class. Do not rely on the compiler options to automatically clear the memory 
with zeros; 

 Not set the initial values for local variables. Failure can take many forms when 
initial values of the variables are erroneous. When the program runs under the 
debugger, memory is usually cleared, making it difficult to localize the error;  

 Lack of control when using pointers in C language or C++. When passing 
pointers as parameters to functions it is appropriate to pass the size of the area 
referenced by a pointer. If a pointer is passed to a structure it is expedient to 
provide a field with size of the structure, which must be filled before the function 
call. After receiving of the pointer function first step is to check that the pointer 
is not equal to zero and the size of the corresponding field has a valid value;  

 Function returns a pointer to a local variable - this code may work correctly, but 
porting to another platform or using of a different compiler generates an error 
because of differences in the organization of the stack. These errors should be 
excluded at the stage of analyzing of the source code - or the function must 
return a local variable, or to fill the data area which is given by a pointer;  

 The lack of control of the results of memory allocation. Failure to allocate 
memory can lead to an exception or return a null value. It depends on the 
compiler, its parameters and the platform used; 

 Lack of control over the release of repeatedly allocated memory area. Analysis of 
the pointer at the end of the program and after the redistribution of memory will 
help to avoid waste of resources.  
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2.10.2.2 Problems when porting interactive applications from 
Windows to Linux platform  

As the results of use of visual development environments - interface mixed with 
"computing" part.  

Use of system-dependent functions for the implementation of the processing events 
associated with I/O devices: mouse, keyboard, timer, etc. Dominated calls to API 
(application programming interfaces) and MFC (Microsoft Foundation Classes) instead of 
the standard library functions. 

 
2.10.2.3 The development of portable code with a graphical 

interface.  

First of all, it is necessary to design the program or make changes to the ready-one to 
realize graphical user interface in separate routines. Interactive and computing parts 
should be separated in source code.  

The problem of porting of the source can be solved in two ways: 
 The first - to use the POSIX (Portable Operating System Interface for Unix) 

standard functions; 
 The second - to create the macro for the required functions in order the main 

text looks the same on different platforms.  
Most often used encoding for storing text data are OEM, ANSI, KOI-8 and UNICODE. In 
different operating systems functions which work with character strings require 
different encoding. For permanent storage is advisable to use ONE encoding of all text 
data. Before the output of the text on the screen it can be recoded in accordance with 
the required current encoding.  

To simplify the maintenance and upgrading of software it is need to design reentrant 
subroutines. One of the conditions for this is to minimize the use of global variables - 
use them to store constants or include in routines critical sections and semaphores. In 
most cases local variables and parameters passing can be used. But in this case it may 
be a bug related to stack overflow.  

 
2.10.2.4 Packages for helping to solve the problem of porting 

applications 

1. Mainsoft for UNIX and Linux, formerly called Visual MainWin for Unix and Linux. It is 
a cross-platform development solution that enables software developers to write Visual 
C++ applications in the productive Microsoft Visual Studio development environment 
and deploy them natively to a variety of UNIX and Linux platforms.  

The package consists of several parts: 
 Inspector of code that allows to detect system-dependent areas; 
 Preprocessor that prepares the source code for compiling with GCC (or any other 

UNIX-compiler); 
 An extensive library of functions, implementing:  

o Windows-primitives (SEH, DLL, processes / threads, tools for their 
synchronization, registry, clipboard and national languages support); 

o a graphical and user interface (GDI32, USER32); 
o COM-model (ActiveX, OLE, MIDL, DCOM); 
o runtime library (ALT, MFC, C Runtime library).  

http://dev.mainsoft.com/Default.aspx?tabid=53 
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2. wxWidgets (formerly wxWindows) is a widget toolkit and tools library for creating 
graphical user interfaces (GUIs) for cross-platform applications. wxWidgets enables a 
program's GUI code to compile and run on several computer platforms with minimal or 
no code changes. 

It is free and open source software, distributed under the terms of the wxWidgets 
License, which satisfies those who wish to produce for GPL and proprietary software.  

http://www.wxwidgets.org/about/feature2.htm 

 

Porting MFC applications to Linux. A step-by-step guide to using wxWindows: 

https://www.ibm.com/developerworks/library/l-mfc/ 

 
2.10.2.5 Specificity of porting of AMR_PAR application (64 bit, 

Fortran) 

Applications, performed on the computing resources of the project do not have 
interactive graphic interfaces. In this case one of the ways to avoid errors when porting 
- to use in Windows and Linux compilers, produced by one developer, for example Intel 
Parallel Studio XE for Windows and Linux.  

The absence of a graphical interface, the use of standard functions and libraries, taking 
into account the previously described problems of portability allows porting of 
application to reduce to a simple recompilation of the source code.  

For AMR_PAR application porting to Linux next main steps were done: 

 Removed interactive interface; 

 Removed block visualization of calculation results; 

 Dynamic memory was used for large arrays; 

 Intel Parallel Studio XE for Windows and Linux were used. Next keys were used 
when compiling the application: 

 «-heap-arrays» - all local arrays are moved to the heap, greatly reducing the 
load on the stack. 

 «-mcmodel large -shared-intel» - to use static arrays larger than 2 Gb. 

 
2.10.2.6 Intel Parallel Studio XE 2011 with VS2010.  

http://software.intel.com/en-us/articles/intel-parallel-studio-xe/ 

Intel® Parallel Studio XE parallel software development suite combines Intel's C/C++ 
and Fortran compilers, performance and parallel libraries, error checking, code 
robustness and performance profiling tools into a single suite offering. 

This helps boost application performance and increase the code quality, security, and 
reliability needed by high-performance computing. 

At the same time, the suite eases the procurement of all the necessary tools for high 
performance, and simplifies the transition from multicore to manycore processors in the 
future. 

Intel® Parallel Studio XE includes the following industry-leading components: 
 Intel® Composer XE Optimizing compilers and high-performance libraries 

 Intel® Inspector XE Powerful thread and memory error checker 
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 Static Security Analysis Close security vulnerabilities and weed out a range of 
bugs 

 Intel® VTune™ Amplifier XE Advanced performance profiler 

 Intel® Parallel Advisor Threading assistant tool for C/C++ Microsoft Visual 
Studio developers - available with Windows versions of Intel® Parallel Studio XE 
or Intel® C++ Studio XE. 

 
2.10.3. Hardware platforms 

Testing procedure for the application version that was transferred to Linux platform is 
based on using access to SGI UltraViolet 1000 supercomputer, located in Pecs, Hungary 
at NIIFI branch. Access to Pecs supercomputer was provided within special Agreement 
signed by RENAM and NIIFI; 

 
2.10.4. Execution times 

Acceleration and Run Time dependences from CPU cores is presented on the figure 
below. For 128x128x128 dimension best number of cores — 4. 

4 cores: walltime - 3,3 min, CPU time -13,2 min. 

16 cores: walltime - 3,7 min, CPU time - 59,1 min 
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Figure 23 – AMR_PAR, HPCG cluster, CPU and wall times 

 
2.10.5. Memory Usage 

Calculated requirements of computational resources for the current OpenMP version of 
AMR_PAR application 
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Dimension Layers Cores RAM Gb CPU minutes

128x128x128 5 200000 4 0,789 28 3,5
256х256х256 5 200000 4 5,972 273 68
256х256х256 5 200000 8 6,062 527 66
256х256х256 5 200000 12 6,068 807 68
384x384x384 5 200000 8 19,2 2110 270
448x448x448 5 200000 8 — 16 37,7 ~ 4500 ~  500
512x512x512 5 200000 8 — 16 ~ 55,6 ~ 130 hours ~ 17 hours

1024x1024x1024 5 200000 16 — 32 ~ 415 ~ 2000 hours ~ 248 hours
2048x2048x2048 5 200000 32 — 64 ~ 3250 ~ 1200 days ~ 154 days

Max Iteration 
per level

WallTime 
minutes

 

Table 14 – Memory usage of AMR_PAR 

2.10.6. Analysis 

Some application scalable problems were found during tests. Information was begun 
analysing by the application developers. After negotiation of approaches for creation of 
a new version of scalable OpenMP AMR_PAR application the refine code was proposed 
for further application development. 
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2.11. DeepAligner and DiseaseGeneMapper 

2.11.1. Summary 

Code author(s): Gergely Windisch, Akos Balasko, Miklos Kozlovszky 

Application areas: Life sciences 

Language: C++, BASH Estimated lines of code: 2000 

URL:  

 http://wiki.hp-see.eu/index.php/DeepAligner 

 http://wiki.hp-see.eu/index.php/DiseaseGene 

2.11.2. Application description 

The two portlets developed at Obuda University (Deep Aligner and Disease Gene 
Mapper) share a common algorithm which takes up about 95% of the total execution 
time so the scalability studies were done together for both applications. 

The Disease Gene Mapper service allows researchers to utilize the HPC infrastructure to 
find gene sequences in an organism which have already been connected to a disease in 
a different organism. The users of DGM have to provide the “source” disease name and 
an organism, and a second organism against which the gene sequence search will be 
executed. Deep Aligner portlet allows researchers to search for a multitude of short 
gene sequences in a given organism. The users can upload multiple sequences in a 
compressed file (.rar, .zip or .tar.gz), the portlet searches for all of them in the selected 
database. 

2.11.3. Implemented scalability actions 

Our aim was achieving high performance for our two portlets. The portlets execute a 
number of different applications, but the most computationally challenging is mpiBlast 
which takes most of the execution time so we focused our benchmarks on that. 
Amongst other things we have tried 

 running the program under different implementations of MPI 
 executing on different hardware environments 
 experimenting with different compilers and compiler options 
 experimenting with mpiBlast options like database fragmenting, enabling parallel 

write etc. 

 
2.11.4. Benchmark dataset 

The blast database size was 5.1 GB, and the input sequence size was 29.13 kB. Each 
measurement was executed 10 times, the average of the 10 executions was taken as 
the final result  

 
2.11.5. Hardware platforms 

A number of hardware platforms have been used for the testing of the applications. The 
portlet we have developed is connected to all these different HPC infrastructures and it 
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is the job of the middleware to choose the appropriate for each execution. For our 
benchmarks we specified the infrastructure the application was supposed to use. 

The benchmarks were executed on five different HPC infrastructures: 
 Debrecen 

o Intel Xeon X5680 (Westmere EP) 6 core nodes, SGI Altix ICE8400EX 
o 1536 CPU cores 
o 6 TB memory 
o 0.5 PB storage 
o Total capacity: ~18 TFlops 

 Budapest (NIIF) 
o fat-node cluster using CP4000BL blade 
o AMD Opteron 6174 CPUs, 12 cores (Magny Cours) 
o ~700 cores 
o Total Capacity ~5 TFlops 

 Pecs 
o SGI UltraViolet 1000 - SMP (ccNUMA)  
o CPU: Intel Xeon X7542 (Nehalem EX) - 6 cores 
o 1152 cores 
o 6 TB memory 
o 0.5 PB memory 
o Total capacity: ~10 TFlops 

 Szeged 
o fat-node cluster using CP4000BL blade 
o AMD Opteron 6174 CPUs, 12 cores (Magny Cours) 
o 2112 cores 
o 5.6 TB memory 
o 0.25 PB storage 
o Total Capacity ~14 TFlops 

 Bulgaria 
o Blue Gene/P with PowerPC CPUs 
o 2048 PowerPC 450 based compute nodes 
o 8192 cores 
o 4 TB memory 

 
2.11.6. Software platforms 

The applications were tested using multiple software stack 
 Different MPI implementations 

o openmpi_gcc-1.4.3 
o openmpi_open64-1.6 
o mpt-2.04 
o openmpi-1.4.2 
o openmpi-1.3.2 

 Different compilers 
o opencc 
o icc 
o openmpi-gcc 
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Each of the different hardware platforms have multiple MPI environments. We have 
tested our applications with multiple versions. There usually is one specific preferred at 
each of the HPC centers which we preferred using.  

 
2.11.7. Execution times 

The following graphs show the results of the executions. The execution times varied a 
little depending on the HPC centre used, but they were more or less stable so we only 
include the results from the Budapest server. The following graphs show the result of 
multiple executions of mpiBlast on the same database with the same input sequence on 
the same computer. The only difference being the number of CPU cores allocated to the 
MPI job1. Figure 24 shows the execution times measured by mpiBlast. If executed on 
just one CPU it takes 3376 seconds for the job to finish (about 53 minutes). As we can 
see the applications scales well, the execution times drop when we add more and more 
CPUs. 

 

 

Figure 24 - Execution times measured by mpiBlast in seconds 

Figure 25 shows the speedup in percentage compared to the original measurement on 
one CPU core. The results show that the application loses momentum around 32 cores 
but the performance increases until around 128 cores. Figure 26 shows the same 
results but from a different angle: that of the efficiency – the speedup / number of 
cores. 

                                         

 

 
1 The actual number of CPU cores was two more than what is shown in the graphs – 2 
additional cores are used by mpiBlast for execution maintenance and management 
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Figure 25 - mpiBlast speedup using multiple CPU cores compared to running it 
on just one CPU core 

Ideally in a perfectly scaling application the numbers should be around one. As we can 
see from the graph the efficiency is quite high (>75%) until the number of cores 
reaches 128 where it starts to drop. 

 

Figure 26 - Efficiency of using multiple CPU cores 

 
2.11.8. Further optimization 

The first task when using mpiBlast is to split the blast database into multiple 
fragments. According to previous research, the number of database fragments have a 
direct impact on the performance of the application. Finding an optimal number was 
essential, so our database was split into different sizes. Figure 27 shows the measured 
execution times. The measurements were executed on 64 cores. 
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Figure 27 - Execution times in seconds using different number of Database 
Fragments 

As it is apparent from the graph, the application performs best when the number of DB 
segments are integer multiples of the number of CPU cores. The reason is 
straightforward: this is the only way an even data distribution can be achieved amongst 
the cores. 

 
2.11.9. Memory Usage 

1 2 4 8 16 32 48 64 96 128 

1,257 2,112 3,345 4,131 5,434 6,012 4,153 8,745 9,897 12,465 

Table 15 - Memory usage while executing the application. The results come 
from the maxvmem parameter of qacct 

As we can see the memory consumption (measured by qacct) increases as the number 
of cores is increased. 

 
2.11.10. Profiling 

The two applications we have created share some of the code base which results in a 
similar behavior. Both applications consist of three jobs in a WS-PGRADE workflow with 
job 1 being the preprocessor, job 2 doing the calculations and job 3 collecting the 
results and providing it to the user. The current implementation for the preprocessing is 
serial, we have investigated parallelizing but according to our profiling approximately 
0.02 % of the total execution time is spent on Job 1 in DeepAligner, so yields no real 
performance gain but can cause problems so we voted against it. Job3 is 0.01% - most 
of the work is done in Job2. Job2 consists mainly of mpiBlast, the profiling shows the 
following results. 

Job1 Job2 Job3 

0,02% 99,97% 0,01% 

Table 16 - Execution time ratio of the jobs in the whole DGM and DA portlets 
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Init BLAST Write Other 

1,79% 97,18% 0,19% 0,84% 

Table 17 - Execution time ratio inside Job2 

 
2.11.11. Communication 

mpiBlast uses a pre-segmented database and each node have their own  part where it 
searches for the input sequence so the communication overhead is very small.  

 
2.11.12. I/O 

1 2 4 8 16 32 48 64 96 128 

0,001 0,001 0,002 0,003 0,004 0,011 0,016 0,019 0,027 0,029 

Table 18 - I/O as measured using the IO parameter of qacct 

As we can see on the previous table the I/O use increases as we increase the number 
of CPU cores in the job. 

 
2.11.13. Analysis 

From our tests, we conclude that our application scales reasonably well up until about 
128 cores. When the appropriate MPI implementation is used on the HPC infrastructure 
the performance figures are quite similar – the scalability results are within the same 
region as expected. The number of database fragments play a significant role in the 
whole application and the best result can be obtained when that number is equal to or 
is an integer multiple of the number of cores. We have also noted that because of the 
high utilization of the supercomputing centers real life performance – wall clock time 
measured from the initialization of the job until the results are provided – could be 
better when using a smaller number of cores because small jobs tend to get scheduled 
easier and earlier. 
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2.12. FMD-PA 

2.12.1. Summary 

Code author(s): Manthos G. Papadopoulos, Heribert Reis 

Application areas: Computational Chemistry 

Language: Fortran Estimated lines of code: 10000 

URL: http://wiki.hp-see.eu/index.php/FMD-PA 

2.12.2. Implemented scalability actions 

 

 

Figure 28 - HPCG cluster, FMD-PA 

 

Figure 29 - Blue Gene cluster, FMD-PA 

The above diagrams depict the efficiency of the two clusters as the number of 
processors increases. The efficiency is measured in nanoseconds of a Molecular 
Dynamics (MD) simulation per day using GROMACS package in double precision. The 
system under study composes of water molecules described by the Simple Point Charge 
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(SPC) model.  As far as Blue Gene cluster, it is recommended to run with many 
processors (>128).  

 
2.12.3. Benchmark dataset 

A series of Molecular Dynamics (MD) simulations were conducted in order to test the 
efficiency of the two clusters. As a model system we chose an aqueous phase of 17131 
molecules described by the well-known Simple Point Charge model. Besides, the 
treatment of electrostatics was done through the Particle Mesh Ewald method which is 
regarded quite time-consuming. The duration of all MD simulations was 20ns producing 
output files of approximately 3GB while all runs were ended successfully within 20h.  

 
2.12.4. Hardware platforms 

HPCG cluster and Blue Gene cluster.  

 
2.12.5. Execution times 

From one hour to several days. 

 
2.12.6. Memory Usage 

Several GBs (e.g. for a Gaussian job needs 4 GBs). 

 
2.12.7. Analysis 

The team tried different architectures: BlueGene, HPCG cluster (it scales on both) 
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2.13. CompChem 

2.13.1. Summary 

Code author(s): NAMD 2.9; http://www.ks.uiuc.edu/Research/namd/ 

Application areas: Computational Chemistry 

Language: Charm++ Estimated lines of code: - 

URL: http://wiki.hp-see.eu/index.php/CompChem 

2.13.2. Implemented scalability actions 

 CompChem/RS application is oriented toward usage of existing source codes 
installed on our home cluster PARADOX/IPB and HPCG/BG. Programs for 
molecular dynamics simulations, Ab initio/DFT/Semiempirical QM calculation, 
docking calculations and cheminformatic tools were installed, covering diverse 
need of the users, which are mainly directed to design and development of novel 
molecules with potential therapeutic value.   

 Some programs installed on PARDOX were offered by developers exclusively as 
executables (for example OpenEye applications, see 
http://www.eyesopen.com/), with their own MPI implementation for multi-CPU 
usage.  

 Part of other programs are precompiled by developers, for example ORCA and 
NAMD, and executable most suitable for particular architecture can be found on 
the developers download area.  

 The majority of CPU times used so far by CompChem application were spent by 
NAMD.  

 In the next lines we intent to respond to request of referees – to find better 
architecture for our application, because of obvious poor scalability of the NAMD 
as the major application on PARADOX/IPB, which failed to provide good 
scalability with NAMD for bigger systems (usually medium sized proteins with 
ligands, counterions and explicit solvent – size in total ~ 90 000 atoms in 
majority of simulations). Problem of scalability is clearly due to the architecture 
of our home cluster – with slow interconnection between the nodes.  

 In order to overcome overestimation of achieved speed/scalability, common for 
using predefined benchmarks, we challenged NAMD 2.9 scalability by benchmark 
made by the system taken from our every-day practice. The care was taken that 
whole system be comparable with NAMD native benchmark 
(http://www.ks.uiuc.edu/Research/namd/performance.html), but we add more 
demanding criteria.  

 The scalability of NAMD 2.9 is examined on two clusters PARDOX/IPB and 
HPCG/BG.    

 Very good scalability was obtained on HPCG/BG clusters, as is shown in following 
lines.  
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2.13.3. Benchmark dataset 

As we mentioned above, our benchmark include the system that comprise all elements 
as native NAMD benchmark (size of the system, frequency of electrostatic evaluations, 
periodic boundary conditions). Our system comprises of protein, ligand, counter-ions 
and explicit solvent, and larger cut-offs; requesting more, and more demanding non-
bonded and electrostatic interactions evaluation comparing to native NAMD benchmark.  

Additionally, in our scalability results we include the output trajectory writing – time 
demanding, but crucial for every MD simulations. Also we applied external biasing 
forces, reference and constraints. All listed usually are challenge for the both speed of 
calculation and the scalability (for any MD simulation).  

In this scalability study we duplicated number of paches in one dimension to use 
maximum of 64 or of 128 CPU’s applied (same for all calculations).  

System is minimized during 30 000 steps, than heated to 310 K during 10 000 steps. 
The 5 ns of unconstrained MD simulation retain ligand close to initial position; this 
means that system is very stable. Few pulling calculations (2 ns) give reliable results. 

Benchmark was as follows: CHARMM FF, ~ 87 000 atoms, 14 Å cutoff, PME, PBC, SMD 
(reference file, constraints applied to stabilize system, pulling force applied), DCD 
(trajectory) writing every 1000 steps / 50 000 steps (1 ns = 1000000 steps) 

   
2.13.4. Hardware platforms 

PARADOX/IPB and HPCG/BG clusters 

The following distinct hardware platforms were used:  

 the PARDOX/IPB cluster with Intel 2 x quad core Xeon E5345 @ 2.33 GHz 

 the HPCG/BG cluster with Intel Xeon X5560 CPU @2.8 GHz 

 
2.13.5. Execution times 

Scalability of the NAMD 2.9 - 86_64-ibverbs (installed on both clusters and used for 
scalability study) were shown in Table 19 and Table 20, and Figure 30 and Figure 31.  

Table 19 - Scalability of NAMD 2.9 on PARADOX/IPB 

CPU's Nodes Wall Clock 
(s) CPUTime(s) Memory 

(MB) 
Speed-up 
Wall Clock 

Speed-up 
CPU Time 

8 1 7921.667 7620.740 86.401 - - 

16 2 5302.639 4177.521 69.138 1.494 1.824 

32 4 3410.354 2268.378 62.297 2.323 3.360 

64 8 2729.427 1377.746 57.380 2.902 5.531 

128 16 2700.188 1399.444 58.531 2.934 5.446 
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Figure 30 - Scalability of the NAMD 2.9, CPU’s / Nodes 

 
CPU 's Nodes Wall Clock 

(s) 
CPU Time 

(s) 
Memory 

(Mb) 
Speed-up Wall 

Clock 
Speed-up CPU 

Time 

8 1 5526.474 5513.867 210.199 - - 

16 1 4702.783 4443.861 189.453 1.175 1.241 

32 2 2173.008 2166.701 187.320 2.543 2.545 

64 4 1289.415 1281.039 199.539 4.286 4.276 

128 8 853.092 849.037 228.988 6.479 6.488 

Table 20 - Scalability of NAMD 2.9 on HPCG/BG 

 

Figure 31 - Scalability of NAMD 2.9, CPU’s 
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2.13.6. Memory Usage 

NAMD always use low memory resources (except if large steps in trajectory writing is 
requested – which is very uncommon), but parallel efficiency is an issue. 

2.13.7. Profiling 

During NAMD MD simulations, after start-up phase which is usually exceptionally fast, 
most CPU time were used on evaluation inter-particle interactions, as well as trajectory 
file writing. Please be aware that we used (real) all-atom force field (means many more 
such evaluations than with united atom force field used).  

2.13.8. Communication 

The drastic difference in time needed for communication, comparing HPCG/BG and 
PARADOX/IPB can be seen from Table 19 and Table 20 (graphical representations on Figure 
30 and Figure 31); and this is main and well-known issue of scalability of NAMD on 
PARADOX.  

2.13.9. I/O  

All pre- and post-processing are typically done on user terminals, therefore those 
phases were not included in our scalability study, different of some other application 
reports in this document. 

It should be mentioned that commonly NAMD save two backup copies of all files needed 
for restarting the simulation (if not otherwise requested) and we used standard 
configuration in this part. Size of output files heavily depends of the time of simulation 
requested, trajectory frequency and external procedures applied. We applied external 
procedure (steered molecular dynamics) in our benchmark set, which did not slow-
down NAMD on HPCG/BG.   
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3. Software harmonization 

3.1. Harmonization status 
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1 3,151 3,132 4,025 
FFTW 3,22 3,12 3,12 3,12 2,15 3,11 3,22 3,12 3,245 
GotoB
LAS 2 1,26 5,240 
GROM
ACS 4,53 4,54 4,54 4,53 3,520 
LAPAC
K 3 3,22 3,22 3,2 3,037 3,11 3,037 2,574 
NAMD 2,7 2,7 2,6 2,8 3,700 
Open
MPI 1,42 1,32 1,32 1,53 1,25 3,428 

ROOT 
5,
26 5,28 4,520 

ScaLA
PACK 1,9 1,8 1,8 4,133 
SPRN
G 2 2 4 6,667 
VMD 1,9 1,9 1,86 4,053 

  Sum: 
59,49

5 
Table 21 shows the most typical libraries that are needed for the HP-SEE applications to 
be ported from one site to other. This table was defined in the D8.2 deliverable [7]. It 
shows the actual software stack of the HPC sites when D8.2 has been written more 
than a year ago. We created an equation, which help to analyze the harmonization 
status between the sites. If several versions of the same software are installed on the 
same site, then only the higher version number is used. 

The metric is defined as follows: 
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Equation 3 – Harmonization metric 

The result of the formula is the distance value for a particular library. The target is to 
reduce it. Index “i” denotes the count of resource centers that have installed this library 
and index “k” represents those who have not. Value 0.5 is the weight of all not-installed 
software. Value of Xavg represents the average distance of the installed library versions. 
If the metric value is reduced, then the concerned library versions are coming closer, 
and thus the software components are considered to be more harmonized. 
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Table 21 – Software stack status, input: D8.2 
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Atlas 3,83 3,83 3,83   3,83 3,8 3,8     3,911 3,8 1,673 

BLAS 3,037 3,22 3,22 3,037 3,037 3,037 3,037 3,037   3,037 3,21 1,255 



D8.4 - Assessment of interoperability and scalability solutions      Page 79 of 97 

HPSEE-WP8-HU-23-D8.4-k-2013-02-28   HP-SEE consortium 

BLACS 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1   1,1 1,1 0,500 

charm++         6,21             5,000 

CPMD       3,151 3,151           3,132 4,025 

FFTW 3,22 3,12 3,12 3,12 3,12 2,15 3,11 3,33   3,31 3,12 2,344 

GotoBLAS 1,13 1,13 1,13 2               4,805 

GROMACS 4,53 4,54 4,54 4,54 4,53           4,55 2,533 

LAPACK 3 3,22 3,22 3,2 3,037 3,42 3,42 3,42   3,31 3,037 1,813 

NAMD 2,9 2,9 2,9 2,7 2,7           2,9 3,033 

OpenMPI 1,43 1,32 1,42   1,43 1,43 1,43 1,54   1,6 1,25 1,587 

ROOT 5,34 5,34 5,34           5,26     3,620 

ScaLAPACK 1,75 1,75 1,75 1,9 1,8 2,02 2,02 2,02   2,02 1,8 1,630 

SPRNG       2 2           4 6,667 

VMD 1,9 1,9 1,9 1,86 1,9             3,064 

                      Sum: 43,549 

 Table 22 – Software stack status, 22th February 2013 

The harmonization level has been improved because the metric value has been 
decreased from 59,495 to 43,549. 

3.2. HP-SEE software stack 

WP8 has defined a metric within deliverable D8.2 which describes the harmonisation 
status of the HPC centres. The metric values have been calculated again in this 
document. The result has been improved since missing software components have been 
installed in the centres.  

WP8 has defined two software stacks, which helped to improve the harmonisation level 
of the sites based on the needs of the regional HPC user communities and also taking 
into account the relevant work that has been done in the pan European HPC 
infrastructure PRACE: 

 Minimal software stack  

 Recommended software stack 

The minimal software stack should be installed on all sites (with some exceptions in 
case of non suitability) while the recommended software stack contains optional 
software components that improve the interoperability of the infrastructure if used. 

 
3.2.1. Minimal software stack (mandatory for all HPC centre) 

 

Shells: 

 bash 

 tcsh 
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Compilers: 

 C 

 C++ 

 Fortran 

 Java 

Comments:  

o GNU Compilers should be available in all sites (unless specific reasons 
prevent it) 

o Vendor specific compilers where appropriate (Intel, IBM, PGI, AMD 
compiler)  

o Java of any version or vendor (if architecture justifies it) 

 

Libraries/Communication  

 MPI (At least one of MPICH1, MPICH2, OpenMPI, MVAPICH1, MVAPICH2), 
OpenMPI is preferred if possible. 

 OpenMP 

 CUDA (For sites with NVIDIA GPUs) 

Libraries/Numerical and I/O: 

 BLACS 

 BLAS 

 FFTW 

 ScaLAPACK 

 MPIBLAST 

 LAPACK 

Tools: 

 gprof or any other profiler 

 gdb or any other debugger  

 Perl 

 Python 

 Tcl 

Grid Middleware 

 We are recommending EMI middleware (ARC, UNICORE or gLite) 
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3.2.2. Recommended software stack 

Minimal software stack + optional applications and libraries 

Libraries: 
 SPRNG 

 Atlas 

 charm++ 

 GotoBLAS 

  
Applications: 

 Octave 

 GROMACS 

 AMBER 

 GAMESS 

 NAMD 

 VMD 

 CPMD 

 ROOT 

 

Table 23 notations: 

 IP: Installation is in progress 

 N/A: It is not installed (reason: HPC centre policy does not allow to install it or it 
is not available for that platform) 

 *: Installed 



D8.4 - Assessment of interoperability and scalability solutions      Page 82 of 97 

HPSEE-WP8-HU-23-D8.4-k-2013-02-28   HP-SEE consortium 

Table 23 – Minimal and recommended software stack status, 22th February 2013 
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Minimal software stack 
bash * * * * * * * * * * * * * 
tcsh * * * * * * * * N/A N/A * * N/A 

GNU 
compiler (C, 
C++, Fortran) 

* * * * * * * * * N/A * * * 

Java 
compiler * * * * * * * * N/A N/A * * * 

Vendor 
compiler (C, 
C++, Fortran) 

* * * * * * N/A N/A * * * * N/A 

OpenMP * * * * * * * * * * * * * 
MPI * * * * * * * * * * * * * 

CUDA * N/A N/A N/A N/A * N/A N/A N/A N/A N/A N/A N/A 
BLACS * * * * * * * * * * * * * 
BLAS * * * * * * * * * * * * * 
FFTW * * * * * * * * * * * * * 

Scalapack * * * * * * * * * * * * * 
MPIBLAST * * * * N/A N/A * * * * * * * 

LAPACK * * * * * * * * * * * * * 
Profiler * * * * * * * * * * * * * 

Debugger * * * * * * * * * * * * * 
Perl * * * * * * * * * * * * * 

Python * * * * * * * * * * * * * 
Tcl * * * * * * * * N/A N/A * * * 

Middleware * * * * * * IP IP * N/A N/A * * 
Recommended software stack 

SPRNG           *           *   
Atlas * * * *   * * *     * * * 

charm++           *               
GotoBLAS * * * * *                 

Octave * * * * *               * 
GROMACS * * * * * *           * * 

AMBER         * *               
GAMESS         * *             * 
NAMD * * * * * *           * * 
VMD * * * * * *               
ROOT * * * *                   
CPMD         * *           * * 
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4. Interoperability 

4.1. Resource management system and user 
authentication 

4.1.1. Resource management system 

The HP-SEE Resource Management System has two main goals: 

 Providing a centralized way for requesting access to the HP-SEE infrastructure 

and requesting computing resources 

 Providing an easy way to monitor the resources used by the project 

 

The system is responsible for managing both requests for access to the infrastructure 

and requests for local access to the HPC centers. It also provides an easy way for 

monitoring resource requests and remaining resources. New HP-SEE users can register 

here: https://portal.ipp.acad.bg:8443/hpseeportal/ 

 

Requirements for system usage: 

 X509 certificate 

 Browser and Internet 

 
4.1.1.1 Registration of new users 

The first step in using the Resource management system is to register and submit a 

request for account creation to the HP-SEE Application Review Committee. 

 

Figure 32 - Registration 
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The user can browse the available HPC centres while waiting for approval from the HP-

SEE ARC. If the user request has been approved by the HP-SEE ARC then he will be 

notified by e-mail. 
User need to do these steps to request HPC computing resources: 

 Choose an HPC Center 

 Download it's request form 

 Fill in the requested information 

 Scan a signed copy of it 

 Upload it via the Resource Management System 

 Fill in the upload form 

 Upload it 

 

Figure 33 – HPC Centres 

The Resource management system provides information about requests as well as 

statistics for the used CPU time and job count on different HPC centers. 

 

Figure 34 – Statistics for the used CPU time 
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4.1.2. LDAP 

The authentication and authorization of supercomputer users is significantly different 

from similar solutions applied in grids. While the former often requires local 

personalized user credentials as well as local user access to at least the HPC font-end 

nodes, the later uses temporary local credentials assigned to individual user jobs rather 

than to individual users. Furthermore in the grid case the users are authenticated and 

authorized by the grid middleware (i.e. in the application level), rather than the lower, 

say operating system level, software layers. 

When creating a structured HPC network an appropriate convergence between the two 

are needed combining the advantages of both. The classic way of having OS-level user 

credentials on HPC facilities is to use centralized, yet fail-safe LDAP databases to store 

user and group parameters and expose them on all HPC elements: compute, front-end 

and storage elements uniformly. Even though it works quite well in any local 

configuration, in the everyday practice it is difficult to share multiple LDAP servers 

administered over multiple organizations. One fallback strategy might be to build up a 

directory service, a hierarchically built LDAP database that has multiple subtrees and 

each subtree belongs to different organizations. 

Figure 35 shows the LDAP topology of HP-SEE. There is a central LDAP, which content 

each HPC center and user. The HPC centres also have local LDAP server. The data 

synchronization between the central LDAP and local LDAP is done by a script. This script 

do the mapping, it is essential for example if the uidNumber need to be changed. The 

users are authenticated from this local LDAP service. It is important that the userid 

need to be extended with a “see-“ prefix because it must be unique in each HPC 

center’s LDAP. 

 

Figure 35 – LDAP topology 
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Central LDAP server has been installed on this machine: see-ldap.grid.niif.hu. It can be 

accessed over LDAPS. The server’s certificate issued by TERENA CA. 

Authorization to a HPC centre: 

dn: cn=fep.grid.pub.ro,ou=hpc-groups,o=romania,dc=hp-see,dc=eu  
objectClass: groupOfUniqueNames   
cn: fep.grid.pub.ro   
uniqueMember: uid=see-martin,ou=users,dc=hp-see,dc=eu   
uniqueMember: uid=see-joe,ou=users,dc=hp-see,dc=eu  

If we would like to authorize a user then we need to add the user’s DN to the required 

HPC centre’s tree. 

4.2. HP-SEE common environment 

The Environment Modules package [11] provides for the dynamic modification of a 
user's environment via modulefiles. Each modulefile contains the information needed to 
configure the shell for an application. Once the Modules package is initialized, the 
environment can be modified on a per-module basis using the module command which 
interprets modulefiles. Typically modulefiles instruct the module command to alter or 
set shell environment variables such as PATH, MANPATH, etc. modulefiles may be 
shared by many users on a system and users may have their own collection to 
supplement or replace the shared modulefiles. 

 
HP-SEE common environment (HCE) has been created for the HP-SEE centres which is 
using this module framework. The HCE can be downloaded from here: 

https://github.com/HP-SEE/hce 

These modules have been created for the HP-SEE minimal software stack and 
recommended software stack components which has been installed on the HP-SEE 
centres. Figure 36 shows an example for HCE usage. 

Figure 36 – HP-SEE module system 
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4.3. Software monitoring with Nagios 

The installed softwares are monitored via Nagios, which is a free available, open source 
monitoring system. This is perfectly suitable for this purpose because we can easily 
write a test in any kind of script languages (Perl, shell script, Python, etc.). The return 
value of the test script will be used to check the test result. We created such tests for 
the minimal and recommended software stacks. These test scripts can be downloaded 
from here: 

https://github.com/HP-SEE/hce/tree/master/nagios 

We are recommending the Nagios Remote Plugin Executor (NRPE) [12] because this 
addon is designed to allow you to execute Nagios plugins on remote Linux/Unix 
machines. The main reason for doing this is to allow Nagios to monitor "local" resources 
(like CPU load, memory usage, software version, etc.) on remote machines. Since these 
public resources are not usually exposed to external machines, an agent like NRPE 
must be installed on the remote Linux/Unix machines. 

 

Figure 37 - Nagios Remote Plugin Executor 

 

HP-SEE NRPE command names are described in this file: 

https://github.com/HP-SEE/hce/blob/master/nagios/etc/nagios.cfg 

Figure 38 - Software monitoring with Nagios 

 
Here is the monitoring link which can be opened in the browser: 
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https://hpseemon.ipb.ac.rs/nagios/cgi-bin/status.cgi?host=all 

 

4.4. Usage of gUSE portal 

Bioinformatics portal developed in HP-SEE project allows using 2 scientific applications, 
an application for Deep sequencing for short fragment alignment (called DeepAligner) 
and application called In-silico Disease Gene Mapper. Both are represented by a 
workflow structure shown in Figure 1 

 
4.4.1. Availability 

 
4.4.1.1 DiseaseGeneMapper 

http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-
6.0.5/en_GB/web/guest/diseasegenemapper 

 
4.4.1.2 Deep Aligner 

http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-
6.0.5/en_GB/web/guest/deepaligner 

 
4.4.2. Requirements 

There are two requirements the users have to comply in order to use the DGM and DA 
portlets 

 appropriate group membership on the ls-hpsee portal – to require the 
membership, please contact the portal administrator: balasko at sztaki dot hu 

 valid, downloaded and associated certificate for the NIIF supercomputers. To 
apply for such a certificate please contact the NIIF administrator: roczei at niif 
dot hu 
 

4.4.3. Installation (for portal administrators) 

 Import the workflow, export it as an application 

 Install the portlet (for details on how to install the portlet, please refer to the 
ASM User Manual).  

The nodes represent jobs are preconfigured to be submitted to computational resources 
of ARC middleware. The real computational resource on where the job will be executed 
is selected by ARC's client-side brokering mechanism. The concrete job submission and 
managing its life cycle fall within the core system's cognizance. This part of the life-
cycle is being modified by allowing the users to specify their requirements for the 
computational resource by modifying the JSDL description of a job. Then a planned 
development aims to be able to change the strategy of the brokering according to the 
claims of the portal. 
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One interface was developed per each application in order to import, parameterize and 
execute them while the details of the configuration and the execution are totally hidden 
from the users. 

These portlets are based on Application Specific Module(ASM) provided by core WS-
PGRADE system which hides all internal communication among gUSE components and 
offers an easy-to-use Java API that enables the communities to develop a clear and 
focused interface exploiting the features of the core portal. 

Users of WS-PGRADE define their applications as workflows. They can share their 
applications among each other by exporting them to the repository. Following this way, 
other users can import such applications and execute or modify them in their user 
space. Concept of ASM that solves problem of customization is based on this scenario. 
In this case two different user roles can be defined: Application Developer, who created 
and shared the application, and the End Users, who import and execute it. Or 
analogously, Application Developers are administrators, or scientists with developer 
skills; and the End Users are those, who just use their product. 

 

Using this solution development of science gateways technically means development of 
web applications that produce a transparent interface, handle the interaction coming 
from the users, and, according to them, call the internal components. This calling 
mechanism is simplified by ASM as it hides complex algorithms and web-service calls 
and provides these functionalities as simple Java methods covering the whole life-cycle 
of the workflow in aspect of End Users. ASM contains method to get the list of 
Application Developers, the applications shared by a particular Developer, and to import 
a particular workflow. To guarantee that the workflow will do the same that the 
Developer wanted originally, End Users have restricted possibilities to manipulate the 
workflow. Especially they cannot modify the workflow structure by adding or removing 
a node, or they cannot replace the program placed in a node, but they can upload and 
attach a new input file, set or modify command line arguments, etc. 

Finally End Users can manage the workflows; they can submit them to a distributed 
resource, check the execution, download their outputs or delete them. gUSE can be 
extended with an interface that hides the complexity of the inner abstraction levels, 
and inner callings of different core services. Without this component, one or more 
difficult web-service callings should be constructed each time when a customized 
portlet should get or pass information from/to the portal. In order to avoid this 
complexity Application Specific Module(ASM) API covers all of these internal information 
accesses by a simple call of well-parameterized JAVA methods. 

Figure 39 shows the main concept of a science gateway based on ASM, where ASM-
based user interface represents the interface developed especially for an workflow 
constructed via the traditional WS-PGRADE interface. 
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Figure 39 - Concept of ASM 

 

4.4.4. Using the portlets 

The first step of using the applications is to download a valid certificate and associate it 
to the NIIF supercomputers 

 

Figure 40 - Upload certificate to use the portlets 
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Figure 41 - DiseaseGeneMapper main window 

 

 

Figure 42 - DeepAligner main window 

 
4.4.5. Creating a new DiseaseGeneMapper query 

The first thing that has to be done is clicking on the button Create new 
DiseaseGeneMapper Query. It will import the latest version of the DiseaseGeneMapper 
workflow (see Appendix, Naming convention). A job is created from the workflow, and it 
shows up in the main table.  

 
4.4.6. DiseaseGeneMapper job lifecycle 

 INIT: first state – no parameters are set 
 RUNNING: parameters are set and the job has been submitted 
 FINISHED: job finished running – results can be downloaded 
 ERROR: job finished running – there has been an error 

At first the job will be in the INIT state. It means that the workflow has been imported, 
but the parameters have not been set and the job has not been started yet. At this 
point the user has to press the Set Parameters button, and specify all the parameters. 
All the fields are filled out with example values.  

 
4.4.7. Submitting jobs 

Clicking on the submit button submits the job to the ARC middleware which forwards it 
to the NIIF supercomputers. 
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Figure 43 - Executing DeepAligner query 

When the job is submitted, the Status becomes RUNNING. The running time depends 
greatly on the number of input sequences, the size of the blast database and the load 
of the supercomputer the job is executed on. If the supercomputers are occupied it is 
not uncommon for the jobs to be on the queue for several hours. Once the jobs are 
executed they should finish in a matter of minutes. 

After the jobs are completed, the status becomes either FINISHED or ERROR. FINISHED 
means that the workflow ran without any problems – but it does not necessarily mean 
that the results are calculated as expected. The program handles unexpected situations 
(like blast database missing, unexpected input file format etc.) quite well, so even if 
there was an error, the status will be FINISHED, and the error message will be inside 
the resulting file. If the status is ERROR, it usually means that there was some problem 
outside the scope of the workflow (like mpiBlast running out of memory or a 
synchronization problem between the nodes). In rare cases it is even possible that even 
though the status is ERROR, it did not affect the correct results. 

 
4.4.8. Downloading results 

 

Figure 44 - Downloading results from the applications 

When the job finished running (the status is either FINISHED or ERROR), the results 
can be downloaded by clicking on the Download button. The resulting file is a tar.gz 
called blastOutput.tar.gz, and it holds either the blast results for all the input 
sequences or the error message. 
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4.4.9. Parameters 

 

Figure 45 - Setting the parameters for Disease Gene Mapper 

 NCBI database: the name of the NCBI database from which the sequences are 
going to be downloaded. 

 Source animal: The downloaded sequences are filtered, only the ones belonging 
to the given source animal are stored and processed 

 Destination animal: Database for the blast search 
 Disease name: the name of the disease that the user is looking for in the NCBI 

database 
 E value: Expectation value for the BLAST search. The larger the number the 

more inaccurate the results are 
 Blast algorithm: the algorithm blast uses 
 Number of sequences to download: the NCBI database usually holds lots of 

sequences associated to a disease. The number the user sets here will tell the 
program how many of these sequences to process. There is no maximum 
number here, the program will automatically adjust it to number of NCBI results. 
 

4.4.10. DeepAligner 

For using the portlet, see DiseaseGeneMapper section. 
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4.4.10.1 Parameters 

 

Figure 46 - Setting the parameters for DeepAligner 

There are only three parameters for the DeepAligner portlet 
 Compressed file: the most important parameter, this file holds the sequences 

that are to be searched in against the selected database. The compressed file 
can either be a tar.gz, zip or rar. The sequences inside the compressed file are 
store as one sequence per file. The names of the sequence files can be anything, 
but they will be renamed to output_x, where x is an integer starting from 0 

 Blast database: the name of the database against which the sequences will be 
BLASTed. 
The databases currently supported are 

o est_human 
o drosoph.nt 
o est_mouse 
o est_others 
o env_nt 
o gss 
o htgs 
o human_genomic 
o igSeqNt 
o nt 
o other_genomic 
o patnt 
o sts 

 E value: Expectation value for the BLAST search. The larger the number the 
more inaccurate the results are 

 
4.4.11. Appendix 

Special considerations for the workflows 

Naming convention: 

Both Diesase Gene Mapper and Deep Aligner portals require a special naming 
convention when importing workflows. DGM loads workflows that are called 
DiseaseGeneMapper_vX, Deep Aligner expects workflows that are called 
DeepAligner_vX. The X in both cases mean an integer, which is the version number of 



D8.4 - Assessment of interoperability and scalability solutions      Page 95 of 97 

HPSEE-WP8-HU-23-D8.4-k-2013-02-28   HP-SEE consortium 

the workflow. The portlets open the version with the highest version number. The 
names are not case sensitive. 

Port values: 

Both portlets assign values to the ports using the API call ASMService.setInputText. 
This call only has an effect if the given port in the workflow’s configuration is set to be 
a value, but the value field is left empty. If a value is specified for the port, 
setInputText will not overwrite it. 
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4.5. HP-SEE helpdesk system 

HP-SEE operates a Request Tracker (RT) based [http://www.bestpractical.com/rt/] 
ticketing systems (Helpdesk) that is used for requesting some of the HP-SEE services, 
reporting problems and tracking requests and reports status. The Helpdesk is available 
to users either via mail (support@helpdesk.hp-see.eu being the main contact point for 
the helpdesk) or via a web interface (https://helpdesk.hp-see.eu) for users with a valid 
X509 certificate. The HP-SEE helpdesk is used mainly for two 
purposes. User/application porting support, as well as for operational purposes. More 
details in the structure of the support units and its usage have been given in the 
relevant WP5 deliverables.  

In terms of interoperability and mainly interoperation the helpdesk has been designed 
and implemented in a way that information flow can be transferred to operators or 
helpdesk systems of each individual HPC centre that participates in the HP-SEE 
infrastructure. This has been implemented by creating specific queues for each HPC 
centre. Each queue is stuffed with members of the support teams of the HPC centres as 
well as mail aliases for their "local" Ticketing Systems/Helpdesks. Therefore both uses 
and infrastructure operators are provided with a single access point for requesting 
feature or report gin problems, that facilitates information exchange with the relevant 
support teams. In cases where users or operators cannot identify the specific support 
unit via the HP-SEE helpdesk they can submit their request/report to the generic 
support queue which is monitored by the project's operators that ensure timely 
forwarding of any request to the appropriate support unit.  
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5. Conclusions 

The previous deliverable (D8.2) has defined a number of cations regarding 
interoperability and scalability. Table 1 gives a summary of the HP-SEE applications, 
which have implemented some of the defined scalability improvement actions of D8.2. 
Most of them (HC-MD-QM-CS, GIM, NUQG, SFHG, FMD-PA) are using MPI and OpenMP 
parallelization technologies. GENETATOMICS, MSBP, CFDOF, DeepAligner, 
DiseaseGeneMapper, CompChem is using only MPI and AMR_PAR is using only OpenMP. 
The AMR_PAR application is unique because it has been ported from Windows to Linux 
and this gives a very good overview of porting steps. DNAMA application has been 
tested in hybrid mode too, which combines MPI and Pthreads. Their scalability results 
were weaker since Pthreads can’t give enough speedup with dataset used in the 
benchmark. Several MPI implementations have been tested by the GENETATOMICS 
application. The conclusion was that the version of MPI does not effect the scalability. 
Another interesting result by GENETATOMICS application is that hyper threading should 
be used where available. Various compilers have been tested by the SET application 
and the result was that Intel compiler provides the best results on Intel Xeon cluster. 
For the IBM Blue Gene/P architecture the obvious choice was the IBM XL compiler suite 
since it has advantage versus the GNU Compiler Collection in that it supports the 
double-hammer mode of the CPUs. Other interesting result is that SET application has 
30% improvement when hyper threading is turned on. SET application has been tested 
on NVIDIA GPU based systems too and it gives better performance using the newer 
M2090 cards versus the old GTX295, which was to be expected because the integer 
performance of the GTX 295 is comparable to that of M2090, but the floating 
performance of the GTX is many times smaller.   

Another aim of this deliverable was to improve the interoperability between the HPC 
centres and improve transparent access to this integrated infrastructure. HP-SEE 
common environment has been defined which includes HP-SEE minimal software stack, 
recommended software stack, and the module system. We have taken into account the 
user needs and the PRACE [10], DEISA [13] software stacks also. The defined software 
stacks helped us to improve the harmonization level between the HP-SEE centres: 
Table 22 and Table 23 give a summary of this. DeepAligner and DiseaseGeneMapper are 
used to demonstrate the Bioinformatics Portal, which has been integrated with the 
Hungarian HPC centres. This can be easily extended with other HPC centres too if 
needed. Finally, the resource management portal helps the user to request new HPC 
account in a common way; and users can also request support on the HP-SEE helpdesk 
portal. 


